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Abstract

This report describes the algorithms used in the post-Block II fringe-fitting software

called "Fit." The steps needed to derive the VLBI charged-particle corrected group delay,

phase delay rate, and phase delay (the latter without resolving cycle ambiguities) are

presented beginning with the set of complex fringe phasors as a function of observation

frequency and time. The set of complex phasors is obtained from the JPL/CIT Block II

correlator. The output of Fit is the set of charged-particle corrected observables (along

with ancillary information) in a form amenable to the software program "Modest."
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Section 1

Introduction

This report presents the theoretical basis for the post-Block II fringe fitting data anal-

ysis used in very long baseline interferometry (VLBI). The overall goal of this analysis is to

extract unbiased physical observables for each observation scan, namely the charged par-

ticle corrected bandwidth synthesis (BWS) delay, phase delay rate and phase delay (when

cycle ambiguity resolution is possible), directly from the Block II correlation coefficients.

These observables are typically combined with those from other scans and passed to the

fitting program Modest [1] (formerly called Masterfit) for further analysis.

By design, much of the material in this report is independent of a specific software

implementation. However, where choices in computer memory allocation or processing

time influence the analysis, this report will refer specifically to the program Fit and its

solutions to the various data analysis problems. As experience with Mark III data increases

and as better computational resources become available, detailed improvements will be

developed and implemented in Fit. Although some details of the implementation may

change as future improvements are made, the majority of the material presented here

should remain current.

The Block II processor is a VLBI correlator developed at JPL and the California

Institute of Technology. A detailed description of this processor can be found in references

2 and 3. The Block II is capable of correlating both Mark II and Mark III data formats[ 3],

although this report will concentrate on the Mark III data type because its higher data

rate makes it much more desirable for high accuracy work (Fit is able to process Mark II

data and much of the material presented in this report is valid for both data types).

Some aspects of post-Block II data analysis have been described in reference 2; however,

at the time of its writing, the Block II was expected to include a hardware device named

Tensor. This device was designed to perform the Fast Fourier Transforms needed in the

data analysis described in sections 6 through 11 in this report and section 13 in the

reference. Work on Tensor was abandoned before its completion, leaving the post-Tensor
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software, named Restore, without an input route, except for a software emulator of the

Tensor hardware. This software emulator was designed for debugging Tensor during its

construction, and not for data analysis. Thus, except for the software emulator of the

Tensor hardware in combination with Restore, no route from the Block II processor to

VLBI observables existed.

Because Tensor's function would eventually have to be performed by post-correlation

software, the opportunity to drop many restrictions and approximations required for such

a hardware device was exploited. This report presents these new analysis steps, along

with all those needed to obtain the final observables from the Block II output, and their

theoretical justification. The material presented here can be roughly divided into three

tasks: a) obtaining an a priori estimate of residual delay, phase delay rate and phase

for each observation band, b) calculating accurate corrections to the a priori estimates

using phase tracking and linear least-squares parameter estimation, and c) combining these

estimates with the correlator model and applying charged-particle corrections to obtain

the final observables. Each of these tasks is divided into several topics which are covered

in detail by each section of this report. Sections 2-5 cover some preliminary calculations

necessary to the analysis, sections 6-11 discuss the a priori calculation, sections 12-15

are concerned with parameter estimation, sections 16-18 pertain to the final observable

estimates and section 19 covers the Modest interface. Appendices A and B describe specific

calculations in more detail than that found in the text, appendix C gives the mathematical

definitions of special variables used extensively in the least-squares analysis and charged-

particle calibration, and appendix D presents a complete list of variable definitions.

The Phase Sign Convention Used in this Report

Because observables extracted from the Block II output are passed to Modest, the sign

convention of both must be treated explicitly. The Block II's phase sign convention is sta-

tion 1 phase minus station 2 phase, while Modest's is the reverse. Most expressions in this

report are valid in either sign convention as long as all quantities are in the same system.

However, the Block II convention is implicitly assumed for all residual observables because
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these are derived more directlyfrom the correlatoroutput; totalobservables, because they

are passed to Modest, are assumed to be in the Modest system. This separation of the

two sign conventions corresponds to that used by Fit. In this report, the Block II system

isused up through section 15 and the Modest convention isused in sections 16 to 20.
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Section 2

Correlation Coefficients and Error Analysis

This section presents expressions for the complex correlation coefficients and their

errors as a function of the number of Block II accumulation counts: the Block II counts

are the raw inputs to Fit. Expressions relating correlation coefficient errors to phase and

amplitude errors are also given. Finally, the variance of instrumental phase calibration

phasors and their effect on the calibrated cross-correlation data are derived.

The Frequency Domain Correlation Coefficient and its Variance

The delayed bitstreams from each station at the correlator are multiplied together and

counterrotated[ 2] in quadrature for a number of lags, typically eight. A Fourier Transform

(FT) is performed to transform these lag-domain correlation coefficients to the frequency

domain. These final frequency domain correlation coefficients are the primary correlator

The frequency domain correlation coefficients for bin b, _b(t), canoutput passed to Fit.

be written
NL--1

1 e- 2_ri_-_-L
_b(t) - NL _ _l(t)

l=O

[2.1]

where the sum over lag shows the FT explicitly, _(t) is the complex correlation coefficient

for lag I after fringe counterrotation at time t and NL is the number of lags. Both b and l

are integers ranging from 0 to NL -- 1. For the typical case of eight lags and a sample rate

of 4 MHz, each of the eight bins has a nominal width of 4 MHz/NL = 0.5 MHz. Because

the channels are single-sideband, four of the eight bins contain noise and are ignored by

Fit. After expanding the real and imaginary parts of [2.1], the variance of _b(t) can be

written

NL --1

Var[Re _b (t)] 1-
NL l=o

( 2rbl _ (2_rbl _
[Var[Rept(t)]c°s2\ NL ] + Var[Impt(t)]sin2\-_L /] [2.2]

1 NL-1 (2rblVar[ImPb(t)l- NL2 E [Var[Im_'(t)lc°s2 -_L/
/=0

(2_rbl _ .+ Var[Rept(t)]sin2 --ffL:]
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This step assumes each realand imaginary component isstatisticallyindependent of every

other component, real or imaginary, as derived in Reference 4 (this has been tested by

measuring the autocorrelation of the Block II bitstreams[S]).The lag domain correlation

coefficientaftercounterrotation (alsocalledlobe rotation),p't(t),can be expressed in terms

of the correlationcoefficientbefore counterrotation as

v

 t(t) = [2,31
j=l

where flt(t b) is lag l's single-bit correlation coefficient before lobe rotation, elm is the model

fringe phase, t} is the time tag of the jth bit in the sum and V is the total number of bits

in the sum, typically around 8 x 10 6 for two-second integrations. Assuming the observed

bandwidth is not oversampled and no DC bias exists (so that each bit is statistically

independent and each component of the correlation coefficients has zero mean), the variance

of the real and imaginary parts of fit(t) can be written

v

Var[Re _t(t)] = _ Var[/3t(t})] cos 2 cfm [2.41
j=l

v

Var[Im_t(t)] = _ Var[flt(t})]sin 2 ¢_m.

j=l

Equations [2.4] can be evaluated from the variance of the like and unlike-sign counts

which are binomially distributed. For the digital three-level lobe rotator used in the Block

II correlator, the cos 2 ¢_m and sin 2 ¢5 rn terms will be -{-1 when not blanked and zero when

blanked (see references 2 and 6 for more detail on lobe rotation). For an interval of V bits,

the real and imaginary components of equation [2.3] become

Rent(t) = (Lz - Uz) _ (2Lz + Bz - V)
V V

Im_'t(t) - (Ly - Uy) _ (2Ly + By - V)
V V '

[2.5]
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where V = Lz + Uz + Bx = Ly + Uy + By and Lz(_) and Uz(_) are the number of like and

unlike-sign counts of the real (imaginary) component of Pl (commonly referred to as the

cosine (sine) accumulation) and Bz(y ) is the number of blanked bits in the interval. From

[2.5], the variance of the x(y) component of Pl is 4/V 2 times the variance of Lz(y ). Using

the binomial distribution's expression for the unbiased variance estimate of the number of

successes in V - Bx trials, given the actual number of successes is Lz, gives

4 V - Bz Lx (1Var[Refil(t)] = -_ ( V :-_B: - I ) (V - Bx) ( V _ Bz ) Lz ) [2.6]V '

with a similar expression for the variance of the imaginary component of Pl. Solving the

first equation in [2.5] for Lz and substituting leads to

Var[Reffl(t)]- V - B, V - B, [1 V 2V 2 (V-Bz-1) -(V-Bz)[Rep/(t)]2]"
[2.7]

Using V - Bx(y ) >> 1, I tl << 1 and the imaginary component analog to [2.7] gives, to very

good approximation
V-B

Var[Re_l(t)] _ Var[Im_t(t)] _- V 2 , [2.8]

where B is the average of the blanking counts for the sine and cosine accumulations; for

typical 2-second integration intervals and several KHz fringe rates, the two blanking counts

are nearly identical. Finally, substituting this into equations [2.2] leads to

V-B

a S _= Var[Reffb(t)]--_ Var[Imffb(t)] = NLV2,
[2.9]

where a 2 is the variance of either component of Pb. This shows the system noise associated

with a given fringe phasor depends only on the number of processed bits and number of

lags (given the above approximations). For the Block II lobe rotator, B _ V/4 so

as 3 [2.101
4NLV "
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Expressing the Correlation Coefficients and their Variances in terms of Corre-

lator Output

For each dump interval,the Block IIcorrelatorpasses the user the like-signand blank-

ing counts for the sine and cosine accumulations along with the invalidcounts. The invalid

counts were ignored in the above analysis but can be included by interpreting V as the

number of valid counts: the total number of bits,N, minus the invalidcount, I. The real

component of the correlationcoefficientcan be written as (see [2.5])

Lz -

Rept- N-I [2.11]

2Lz - N + I + Bx

N-I

with a similar expression for the imaginary component. The Block II correlator hardware

has a flip-flop circuit before each accumulator which results in the counts sent to the user

being only half the expected value. Therefore, Lz(y ) -- Lz(y)//2, ]_x(y} -- Bz(y}/2 and

i -- I/2 where the hat (A) represents quantities passed to the user by the correlator (the

correlator accumulator flip-flop circuits alternately begin with 0 or 1 to avoid inducing a

bias, on average). Thus,

Re_t --
Lz - N//4 + i/2 + Bz//2

M ,

[2.12]

where Zz = N/4- /_z/2- i/2 is a DC bias and M = N/4- i/2 is a normalization

factor (Zz is a DC bias in the sense that the Block II hardware accumulators can only

increment, and must therefore be offset by Zz, so the cosine accumulator contains L.- Zz,

•for example). The expression for the imaginary component of gt is similar. After the lag

FT, given by [2.1], the fringe phasor is

Pb -- (Pz,Py) = N/4-- i/2' N/4 - i/2 = ' ' [2:13]
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where S and C are the like-sign sine and cosine counts from the correlator (the Block II

can process data in either "lag" or _bin" mode; the sine and cosine counts passed to the

user are given by Lx and L_ in equation I2.12] when in lag mode, and b and S in [2.13]

when in bin mode, which is the mode assumed in this report; in both cases, C and

are integers, because, when in bin mode, [2.1] is calculated using integer arithmetic). The

error on each component, obtained from [2.9] above, is

a2_= N-I-B _ V-2/_ M-/_/2 [2.14]
NL(N -- 1) 2 NL V2 4NL M2

where V - N- 2] = 4M. The software program Fit uses [2.13] to calculate the correlation

coefficients and [2.14] to calculate the distribution variance, with/_ equal to the numerical

average of the sine and cosine blanking accumulations, as noted above.

Because of the large number of bits processed by the Block II for each phasor in a typical

two-second dump, usually about 8 × 10 6, and the inherently small correlation coefficient,

the central limit theorem implies the probability distribution of either component of Pb is

normal to very high accuracy. The real and imaginary components of _b(t) are therefore

independent, as proved in Reference 4, and have a Gaussian probability distribution. The

means of the real and imaginary components, pz and py, are the components of fib given

in equation [2.13] and a 2 is the variance of either component as defined in [2.14].

Phase and Amplitude Distributions and Variances

Given the Gaussian probability distributions for the real and imaginary part of the

fringe phasor, with means and variances given by [2.13] and [2.14] above, it is possible

to change variables to derive the distribution for the phase and amplitude. Appendix A

contains a complete derivation of the phase and amplitude probability distributions which

are summarized below. Defining ¢ - arctan(p_,pz) and A 2 -- p2z + p2 for a given bin, the
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phasedistribution, P(¢), mean phase, <¢), and phase variance, a_, are given by

R cos(¢ - CR)
P(¢) = --e 5_5 1 + cos(¢ - cR)e 5°5 1 + erf [2.15a]

(¢) [2.15b]

_r2 -n5 R 0 2 -R5"i"5° RcosO
a_ : -_-e_ + V'_--_-----_ dO cosOe 5._ 1 +erf V_a [2.15e]

where Cn and R are the polar coordinates of the parent probability distribution's center

(see below). The amplitude distribution, mean, and variance are given by

P (A ) --- --A -( Rs +A21Io l AR '_2,,2
a2e \ a2 ] [2.16a]

[2.16b]

[2.16c]

where I0 and I1 are modified Bessel functions of zero and first order. Table 2.1 shows some

of these expressions for the no signal, weak signal and strong signal limits. Figure 2.1

shows a¢ plotted as a function of R/a along with the weak and strong signal limits. Note

that R/a is defined to be the signal to noise ratio (SNR) for a given phasor.

In the above expressions, a careful distinction between R and A should be made.

The parent probability distribution for Pb is a two-dimensional Gaussian centered at polar

coordinates (R, CR). In the no-signal case, R is zero. The amplitude of a given phasor, A,

drawn from the parent distribution will always be non-negative, even in the no-signal case.

Thus A is a biased estimate of R as seen in [2.16b] or the first row of Table 2.1. Figure 2.2

shows (A)/a as a function of R/a.
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EXPRESSIONS FOR (A), aA AND a¢ IN LIMITING CASES

Statistic White Noise Weak Signal Strong Signal

(A)

aA

a¢

R2 o.2
av/-_ - aV/_(1 + 4---_- ) R(1 + 2-h-_)

Ir r R 2o o + o(1-

_--- _--_-(1 - _/_2--_ R a / R,/5

Table 2.1 Expressions for the mean amplitude, amplitude sigma and phase

sigma in the no signal, weak signal and strong signal cases. R

is defined in the text and a is given by [2.1_].

Error Analysis of Instrumental Phase Calibration Data

Instrumental phase calibration tones are injected near the front of the station elec-

tronics. These tones traverse the same instrumentation as the actual data so phase or

delay instabilities induced by the electronics at each station can be analyzed (see section

4 of this report, and references 2, 5 and 7 for more detail). The Block II lobe rotates the

bitstream from each station in quadrature by a model of the tone phase, for each tone. The

counterrotated bitstreams are summed over many bits, typically 8 × 106, to raise the SNR.

This process is similar to the cross-correlation counterrotation except instead of a 3-level

digital lobe rotator, the tone lobe rotator uses 128 levels. Following similar arguments as

above (equations [2.3] through [2.10]), the variance of station i's tone phasor is

1

at2 -- Var[Re_t,(t)] _-- Var[ n t,(t)l [2.17]

where P't_ is station i's tone phasor and Vt_ is the number of valid tone counts. This result

is analogous to [2.10] above; NL is 1 because there is only one "lag" for tone processing

and the ½ compared to _ is the result of better modeling of the sine and cosine functions
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0 1 2 3 4. 5 6

Fig. '2.1 Plot of a# as a function of R/tr (solid). The strong signal limit

(dashed) and weak signal limit (dotted) are also shown.

v

0 1 2 3 4 5 6

R/a

Fig. _.2 Plot of (A)/a as a function of R/a (solid). The strong signal

limit (dashed), weak signal limit (dotted) and (A) = R (dot-
dashed) lines are also shown.
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for tone lobe rotation (these factors come from averaging sin2¢_ m and cos2¢_ m for the lobe

rotation model in the cross-correlation data and similar factors for the tone models).

When calculating [2.17] from the correlator output, multiplexing of the tone lobe ro-

tator must be considered. The tone lobe rotator is time multiplexed over 4 tones (no

multiplexing is done for the cross-correlation lags), resulting in hardware counts from the

correlator being a factor of 4 smaller than otherwise expected. The analogous expression

to [2.14] for each station is

1 [2.1s]
= 2(N - 8it,)'

where a_ is the variance of either tone phasor component, -Tt_ is the station tone invalid

count and the 8 results from a factor of 2 for the flip-flop circuit and 4 from multiplexing.

One option in Fit is to have each cross-correlation phasor counterrotated by the ap-

propriate tone phasor from either one or both stations (section 4 covers this procedure

in more detail). After calibrating the cross-correlation phasor by counterrotation, the

resulting phasor has variance given by (see [4.3])

G 2 _ G 2 -_- 21 -_- Gt2, [2.19]

where the 1 and 2 refer to the two stations, A is the cross-correlation amplitude, At_ is the

station i tone amplitude, and a 2 and a_ are given by [2.14] and [2.18]. If the tone data

are used for calibration, the replacement indicated by equation [2.19] should be assumed

implicitly in place of [2.14].
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Section 3

Band Reference Time and Frequency

A reference frequency for each observation band and an overall scan reference time are

necessary at many stages of the analysis. 'The expressions for these references are sum-

marized here because they are needed immediately for the a priori calculation; derivations

are postponed to later sections where necessary supporting material is given (see sections

14 and 17). Additional reference frequencies are required for each band and each observ-

able (BWS delay, phase delay rate and phase delay) for the charged particle calibration

described in section 17; expressions and derivations for these frequencies can be found

there.

The scan reference time, to, is the only time reference necessary in the analysis and is

given by (see [14.111 and Appendix C)

CX)
witj

o2
ij ¢,i _ Xs [3.1 l

to - (x) - XI'
cai

ij ¢o

where i runs over all frequency bins in the highest frequency band (assumed to be X band),

j runs over all time points, ti, we is bin i's observation frequency, °'2¢o is the phase variance

given by equation [2.15c], and )(5 and X1 are the X-band counterparts to the expressions

given by [C.1]. Missing or bad data points are implicitly excluded from the sums.

The X-band reference frequency is given by (see [14.12] and Appendix C)

X19 -- toX]6 _ Xt3 [3.2]
-- X 'wox = Xo9 - 2t0X00 + t_Xo2 to

with a similar expression for other observation bands (wos is the S-band reference frequency

and w0 is a generic band's reference frequency, for example), and the undefined quantities
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are given by [C.3] and [C.10].

frequency band simplifies to

If to is defined as in [3.1], this expression for the highest

(x)

w0x = (x)
1

q #o

Xl

= Xo' [3.3]

The above expressions are evaluated early in the analysis to give a preliminary to and

t_0 used in the a priori calculation. After the phasor time integration, described in section

12, these expressions are reevaluated because some phasors may have been combined or

eliminated, changing the summations. The new to and w0's calculated there are the final

values for these references. The change in these references caused by their reevaluation

induces implicit shifts in the a priori delay, phase delay rate and phase which must be

accounted for, as described in the last subsection of section 12.
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Section 4

Instrumental Phase Calibration

The instrumental phase calibration tones injected near the front-end of the station

electronics are processed by the Block II correlator by counterrotating the bitstreams from

each station by a tone phase model [7]. Residual phases about this model are passed to the

user as like-sign sine and cosine sums. The counterrotated tone phasors for station i are

calculated similarly to [2.12] since there is no lag FT:

64(Ct, - Mt, St, - Mt, [4.1]

where Mr, -- N/16-It,/2 is the tone normalization, C't,, St, and it, are the sine, cosine and

invalid tone counts directly from the Block II, and N is the total number of bits processed.

The factor of 64/63 is the result of hardware accumulator offsets. Is] The variance of each

phasor component is given by [2.18].

The cross-correlation phases are corrected by counterrotating by the phase of the coun-

terrotated tone phasors, for each bin and integration interval. The Block II is capable of

performing this correction automatically every 25 milliseconds. The disadvantage of this

operation is that the user cannot reconstruct the counterrotation on that time scale for

post-correlation analysis; the Block II only passes the tone counts each dump interval,

typically every two seconds. To have more complete control over the analysis, Fit allows

the user to apply the two-second tone phasors to the cross-correlation data in software

rather than during correlation. Actually, Fit allows the processing of any combination of

the three available data types for each baseline: the cross-correlation data and the tone

data from each of the two stations. This also allows detailed study of the tone data alone

before its application to the cross-correlation data. The equations expressing the combined

phasors' components and variances in terms of the cross-correlation and tone data are

¢ _-- ¢ - Ct_ ÷ ¢t2 [4.2a1

A _- A [4.2b1

a 4-- A v [4.2c]
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where

(A, _) and (Ate, _t_) are the polar coordinates of the cross-correlation and station i tone

phasors, and a 2 and a 2t_ are the cross-correlation and tone variances. If the tone data

are used for calibration, the replacements indicated by equations [4.2] should be assumed

implicitly in place of the uncalibrated variables. Equations [4.2a], I4.2cl and [4.3] axe

applicable for any combination of cross-correlation and tone data if one sets _ -- a = 0

when cross correlation data is not desired in the combination, and _t_ -- at_ = 0 when

station i tone data is not wanted. Equation [4.2b] is applicable only when cross-correlation

data are in the combination; otherwise A _- A_---_ At2 when tone data from both stations

is selected or A _-- At_ when just station i is used. These calibrated phasors are now

processed without regard to the data type(s) in the combination except for the phasor

time integration, explained in section 12, which involves summing the cross-correlation

and station data before combining them as described here.
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Section 5

Manual (Self) Phase Calibration

Each of the Mark III video converters introduces an arbitrary phase in the channel it

records. In addition, instrumental phase non-linearities across the 2 MHz bandpass induce

phase offsets for each bin in a given channel. These phase offsets can be calibrated with

instrumental phase calibration discussed in the previous section or they can be calibrated

by the method presented here, or both methods may be used. If these phase offsets were

constant in time and data drop-out effects were negligible, there would be no need for this

calibration; it will be shown below that drop-out effects are large, making this calibration

almost always required.

Figure 5.1 shows a sample time-averaged phase (shown with error bars) as a function of

observation frequency. For simplicity, phase non-linearities across the 2 MHz bandpass are

not included here. Three S-band channels with four bins each are shown in this simplified

example. Because the phase is determined only modulo a cycle, several possible cycle

assignments are also shown. The residual (about the correlator model) BWS delay is the

slope of the line connecting these phase points. The dashed line shows the best fit to these

data, without channel phase corrections, giving a residual BWS delay that is different than

the slope obtained from the four bins in any single channel, shown by the dotted lines (the

slope of the dotted lines is referred to as the bit-stream alignment (BSA) delay for the

given channel). The large bi_ between the BWS and average BSA delays is caused by

the channel phase offsets, which can be seen in Figure 5.1 as vertical offsets between the

dotted lines.

The residual phases about the dashed line in Figure 5.1 show systematic upward trends

for the four bins in each channel. If these trends are constant in time, the residual delays

for all scans will have a constant, clock-like term added to them. In practice, the trends are

not constant in time due to data drop-outs, resulting in significant delay estimate errors.

This can be seen dramatically by assuming the data in the first channel were lost. The

best fit line in this case is shown by the dot-dashed line, and results in a 250 nanosecond
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change in residual delay from the slope of the dashed line. Even the small fraction of

data drop-outs caused by tape playback at the correlator can cause changes in the phase

variances which translate into significant biases in residual delay; a drop-out error causing

the fit BWS delay slope across 100 MHz to shift one degree at one end of the band leads to

a 28 picosecond error. The sensitivity to data drop-outs can be minimized if the residual
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phases are all as close to zero as possible.

The program Fit minimizes the phase residuals by solving for a constant phase offset

for each bin in a specified scan. This removes the bandpass phase non-linearity in the bins

of a single channel as well as the channel phase offsets. A straight line with arbitrary slope

can be drawn on Figure 5.1 and the phase differences between the data points and this

line can be taken as the set of bin phase offsets; subtracting these offsets from the data

will cause the phase points to lie on the line. Because the slope of the line is arbitrary,

this method introduces an arbitrary clock-like term in the final delay estimate for each

observation band. By using the specified scan to determine the bin phase offsets, and

using these offsets for all scans in the experiment, the arbitrary clock for each band is

equal for all scans. If a high SNR scan is used to obtain the bin phase offsets and the

instrumentation is stable, the phase residuals for all scans (after subtracting the bin phase

offsets) will be near zero, and changes in the phase variances caused by data drop-outs

will have a minimal effect. The arbitrary line Fit chooses is one with slope equal to the

average BSA delay for the band and has zero phase at the band reference frequency, w0.

As discussed below, this choice minimizes an error source in the final, charged particle

calibrated delay.

Obtaining Bin Reference Phases

Before Fit can determine the bin phase offsets described above, it must first obtain

the time-averaged phase points shown in Figure 5.1-. This is done by fitting the phases for

_/_mpc
each bin in the band to the model phase _'i1 ' given by

_ITIpCa"?.P¢ = _mPcwi(tj - to) + _'0i ,
rl 3

[5.1]

where bin i has frequency ¢oi, time point j has time tj, _.mpc is the model phase delay rate

for the band, and CmpC is a reference phase for bin k (the points shown in Figure 5.1). TheOk

reference phases and the phase delay rate can be obtained by minimizing the chi-square

(¢ij- Tmpewi(tj- t0)- ¢o_e_ 2

X 2 = " o2 " , [5.21
ij ¢_i
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as a function of these parameters, where ¢iY is the phase of the data phasors and a 2

is given by [2.15c]. Setting the partial derivatives of [5.2] to zero leads to the following

equations, valid for all k:

"_'Ok ¢di" i

i i i

A mpc 0

Dk = _'mPcwkTk @ WOk Ok,

[5.3]

where the summations

1

T, - _ (tj- to)
j a_s

u_- _ (tj -to) _
j a_o

Di _ Z
a 2

x-"O_j(tj- to)Ei A.., o 2

[5.4]

have been used. Solving equations [5.3] for Crape and _mp¢ leads toOk

Z wi (Ei TiDisi )

i.mp___ i

Dk - i'mPCwk T_
mpc

Ok -- Sk

The expressions for/9/and Ei in [5.4] involve using the phase of the data phasors. If the

phase traverses cycles in time, as shown in Figure 7.1,/9/and Ei will have erroneous values

because relative cycle ambiguities are not assigned (the phase traversing several cycles

during the scan is typical behaviour because the correlator model is usually not accurate

enough to approximately stop the phase over a several minute scan). This problem is

discussed and solved in detail in section 7. The solution there as here is to obtain accurate

parameter estimates using Fourier transforms over time for each bin and counterrotating
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b and phase, ¢_, at time tothese effects from the data. In this case, the fringe frequency, w i,

are found from Fourier transforms for each bin. The data phasors are then counterrotated

so that

¢_j =¢ij -w_(tj - to) - ¢_, [5.6]

where ¢0 is the phase of the original data phasor and ¢0' is the counterrotated phase.

If w_ and ¢_ are determined with sufficient accuracy, the new average phase and phase

delay rate will be about zero. If the system noise and unmodeled phase fluctuations are

small, phase tracking (discussed in sections 12 and 13) is not necessary, and the following

summations will be free of cycle ambiguity effects:

Substituting these expressions and [5.6] into [5.4] gives the following relations

Di = Di + w_T_ + 4_S_

b
Ei = F-,i + wbUi + ¢_T_.

[5.8]

Finally, these are substituted into equations [5.5] to give

CmpO Ok + (_ - +'P°.k)Tkok = sk + ¢_' [5.10]

where

z_- u_- T2I S_. [5.Ii]

This result depends on the two assumptions noted above: 1) the manual phase calibration

(MPC) scan should have a high SNR relative to other scans in the experiment, and 2)
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the phase residuals should not show deviations large enough to require phase tracking

(thisrequirement could be eliminated ifphase tracking were used to assign relativecycle

ambiguities so the sums in [5.7]use the correct phase; Fit does not do this at present as

this option has not been needed). The bin reference phases given by [5.10]correspond to

those shown in Figure 5.1. The differencesbetween these reference phases and a linewith

slope equal to the average BSA delay, rBsA, and with zero phase at w0 are the bin phase

offsets for bin k, ¢_:

* cmpcCk- 0h - TBsA -- [5.12]

The BSA delay for each channel is calculated by performing a Fourier transform on all

bin reference phases in that channel. This method gives the best estimate of BSA delay

regardless of cycle ambiguities which are difficult to determine otherwise because of the

large instrumental phase non-linearities across the 2 MHz bandpass. These channel BSA

delays are then averaged over all channels in each band.

When requested, Fit writes the bin phase offsets to an external file. These offset phases

can be read in later and applied during the analysis of each scan in the experiment. This

results in all phasors in a given bin being counterrotated by the same offset, for all scans.

A possible improvement to the procedure given above would be to average the phase offsets

from a number of scans; this would further minimize residual phases over the duration of

the experiment.

Note that since each observation band is processed separately, each has a separate

arbitrary clock offset. This would pass through the charged particle calibration (section

17) as a constant clock-like term if the delay reference band frequencies, given by [17.29],

Were constant for all scans; this is not the case in practice. The delay error from this

effect is equal to the change in the delay weights, given by [17.6], over the scans in the

experiment, times the difference in the S and X-band clock errors. The delay weights

for a several hundred scan experiment are usually all within about 5 x 10 -4. As long as

the difference in S and X-band clock errors is less than 20 nanoseconds, the delay error

caused by this effect will be below about 10 picoseconds. In choosing the average BSA
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delay as the line used to obtain the bin phase offsets, Fit attempts to minimize this error

by minimizing the clock error. It should be noted, however, at this time, neither the

instrumentally induced clock differences nor the clock differences induced by using the

average BSA delay as discussed in this section have been measured. Thus, the size of

this effect has not yet been adequately determined (this error term is shown explicitly in

equation [17.32a]).

Manual Phase Calibration Consider Analysis:

No Media Effects

This subsection is devoted to obtaining expressions for the data phases after subtracting

the bin phase offsets discussed above. The analysis presented here omits media effects but

is expanded to include charged particle and tropospheric effects in the next subsection.

The model phase, Irn¢ij, is assumed to be given by

¢_ = ¢0+ _C_- _0) + _Ct_ - to)+ ¢_, [5.13]

where ¢0 is the residual (about the correlator model) phase, r is the residual delay, ¢" is

the residual phase delay rate, ¢/ is an instrumental phase offset for each bin, assumed

constant with time, j runs over all time points, tj, and i runs over all bin frequencies,

wi. The first three terms represent the phase without instrumental effects (see [6.2] and

[14.1]). Substituting this phase into the expressions for Di and Ei in [5.4] gives

o_ = [¢0+ _(-_ - -0) + ¢_]s_+ e_T_

Ei = [¢0+ r(wi -w0) + ¢I]Ti + ¢'wiUi.

[5.14]

Substituting these expressions into [5.5] gives

¢_lpcok = ¢0+ _-C_ko-,o)+ ¢_.

[5.15]

[5.16]
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Equation [5.15] indicates this method of obtaining the phase delay rate estimate is un-

biased, again, assuming no media effects. Equation [5.16] is the expression for the kth

bin reference frequency. The bin phase offset for bin k, ¢* is obtained by subtractingk,

rBsA(Wk --TO) from the reference phase (substitute [5.16] into [5.12]). Thus, the bin phase

offset for bin k is given by

¢_ = ¢0 + (_- _BsA)C_k--_0) + ¢I" [5.17]

These are the phases which are subtracted from each time point in a given bin, for all

scans in an experiment. If these MPC phases were applied to the same scan they were

obtained from, the form of the resulting phases would be

= _BsA(_ --_0) + _(tj -- tO),

[5.18]

where the prime here denotes phases after MPC. This shows that applying MPC on the

same scan from which the phase offsets were obtained leads to phases where the instrumen-

tal phase offsets, ¢/, are removed, the band residual phase, ¢0, is set to zero, the delay is

changed to the average BSA delay and the phase delay rate is unaffected (see the consider

analysis at the end of section 14 for a proof of this statement). For other scans in the

experiment, the calibrated phases are

= (¢0- ¢;) + (_- _"+ _;_)(_ - _0) + _(tj - to),

[5.19]

where the * superscript denotes quantities from the MPC scan. This shows the resulting

band residual phase will be offset by ¢_, the delay will be offset by the constant clock-like

term equal to r* - r_sA, and the resulting phase delay rate will be unaffected. In sum-

mary, if media effects are neglected, manual phase calibration eliminates the instrumental

phase offsets and induces a constant clock-like term and phase offset for all scans in the

experiment.
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Manual Phase Calibration Consider Analysis:

Dispersive and Tropospheric Effects

The following subsection expands the consider analysis to include dispersive and tro-

pospheric effects. This material can be skipped on first reading; much of it is related to

material found in section 17 on charged particle calibration. To avoid repetition, a discus-

sion of dispersive effects on phase, the meaning of kj below, the sign convention and other

supporting material can be found in section 17.

To include dispersive and tropospheric media effects into the consider analysis, equation

[5.13] must expanded:

¢_ =¢0+ _(_ - _0)+ _,(tj - to)+ ¢_- ki/_, + _,, [5.20]

where kj is proportional to the differential total electron content in the Block II sign

convention and r_ is the differential tropospheric delay at time t i. Expanding kj and r_

about a linear model gives

ki = _ + (q - t0)k+ k;

,_=___' + (t_- to)_'+ I_r,

[5.21]

where all quantities are in the Block II sign convention. Substituting these back into [5.20]

gives the model phase including dispersive, tropospheric and instrumental effects:

¢_ = (¢0+ _t_0)+ (_+ *_)(_,- _0)+ (_+ _t)_Ctj- to)

+ _ _ _(t_- to) k; + _,_,.
_oi 0Ji _Ji

[5.22]

Note the linear component of the tropospheric delay enters the first three groups of terms

as expected; the phase and group delays have an additional _t and the phase delay rate

has an additional 7rt (see the consider analysis at the end of section 14). This equation can
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be substituted into the expressions for Di and Ei in [5.4] to give analogous expressions to

[5.14]:

Di = [(¢o+ _tw0)+ (r + _t)(wi --_.'0)+ ¢Ii]si + (i"+ 7"t)wiTi

- iSi/_i - _T_/_i - ri/_'i + _iM,

E, = [(¢0+ _%o) + (_ + _t)(_ -_o) + ¢[]T_+ (_ + _t)_,V_

- _T./_. - _V_/_ - G_/_ + _g_,

[5.23]

where

J ¢ij

a, _= k;(t;- to)
j a_ii

t•

Substituting equations [5.23] into [5.5] gives expressions analogous to [5.15] and [5.16]:

_.m,,c=_. +_t_k Eizi
Et,.,.,?zi

Hi(el- F_T_/SI)+ Et,.?(Y, - MiT,/SI)
Eta?Z, Ei_?Zt [5.25]

mpc

Ok = ¢0 + _t_o + (_ + _t)(_ - _o) + ¢_

Fk + _j,TkSi(Gt-FiTt/at)
o.'kSk Sk Ei o.'?Zt

+wkMk wkTk _-_tw_(Nt - MiTt�St)

sk s_ Ei ,,,?z,

k _¢ T_ rl Ei zi ]

The bin phase offsets can be found as above to give

Wk

k tx_ -0 o_ + _(t;_ + t_ - t_),
tok w k

[5.26]
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where w_ is the MPC scan's reference frequency, the following time definitions,

2 , [5.271t4k ----0

Mk
Fk tsk -

t2k = ,2 Sk
w 0 Sk

TkE_(C_- r_TdSJ Tk F_._(N_ - M_rd sJ
t;k = Sk _i _ Zi

are used, and the superscript * has been inserted to explicitly show quantities from the

MPC scan (t_k, the analogous expression to tlk for the tropospheric delay, is zero and will

not be used elsewhere in this report).

Note that r_s ^ is corrupted by dispersive effects in the MPC scan. Dispersive effects

corrupt the BSA delays for each channel, which are averaged to obtain r_s A. Introducing

a small, constant correction delay, r_*or, the BSA delay can be written

,.s, = ,Bs, + k'/_;2 + ,cot, [5.28]

where w; (including the band subscript) is given by [17.29] for the MPC scan and _s^

is the band averaged BSA delay if no dispersive effects were present. The fc*/w_ 2 term

accounts for almost all of the dispersive effect; r_*o_is only introduced to make [5.28] a strict

equality. The bin phase offsets can now be written

, = -,, ,, , _=)( *¢, (¢; +, -0) + ('¢,+ _'' _, - -0) + ¢_ - --

$ *

- k t_I' "o "2k + ¢aj,(t_j, + tsl , - t6k),
cak _Ok

[5.29]
wk

where

* r* -* * [5"301rd -------rBsA --r¢o_

both represents the constant clock-likeerror discussed above and is used to absorb the

small correction term in [5.28].
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If MPC is applied to any scan in general, the phase after calibration can be written

(see [5.19] for comparison):

[5.31]

where

- - [5.32]

The first two lines of terms show the effects on the phase, group delay and phase delay

rate, the next six terms describe dispersive effects and the last term describes the effect

from the non-linear component of the tropospheric delay. Note the mixture of effects from

both the scan in question and the MPC scan. A consider analysis in section 17 will show

the effect each term has on the phase fit observables, the group delay, phase delay rate

and phase delay, for each band.
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Section 6

A Priori Parameter Estimation

This section, along with sections 7 through 11, is concerned with source detection,

defined in section 10, and obtaining an a priori estimate of the residual BWS delay, phase

delay rate and phase for each observation band (the band phase observable is usually not

important except when phase connection is used to derive the phase delay, as given in

[18.1]). These a priori estimates are obtained to effectively improve the correlator model,

the model phase derived from the a priori observables is removed from the data to simplify

further processing. The model phasor used for source detection, /5_n, is given by

where i runs over all bin frequencies wi in the band, j runs over time points t i, Ab is the

band amplitude, ¢i% is the model phase given by

¢,5= ¢8 + T'C , - + - to), [6.2]

Ta is the a priori residual BWS delay, _a is the a priori residual phase delay rate and ¢_)

is the a priori residual phase. The term "residual" here is relative to the correlator model

which has already been subtracted from the data phasors by the Block II correlator. The

parameters Ab, ¢_, r a and _a are to be estimated by coherently integrating the data as

described in the next several sections. After determining these preliminary values, the

phase of each data phasor is counterrotated by the model given by [6.2]. If the signal

strength is great enough, the resulting counterrotated phases can be tracked as discussed

in sections 12 and 13 and fit using the linear least-squares analysis described in section

14. If the signal strength is too low, the counterrotated phasors are fit using the linear

least-squares analysis discussed in section 15.

The band amplitude, given by Ab in [6.1], is obtained from the a priori estimation

procedure but is not the final amplitude Fit passes to Modest. Equation [14.17] gives the

estimated band amplitude sent to Modest (see reference 9 for more details).

6-1



It is important to note that although the model given by equation [6.1]is useful for

source detection and obtaining the a prioriestimate discussed in the next few sections,it

is insensitiveto phase changes of an integralnumber of cycles. A loss of coherence will

result ifthe residual phase about this model fluctuates over several cycles. In practice,

the coherent integration implemented with [6.1]will detect moderately weak signalseven

ifcycle fluctuationson the order of several cyclesare present but willresultin inaccurate

a prioriparameter estimates, especiallyfor the phase delay rate. This isa common prob-

lem at S-band (and even worse at lower frequencies) where ionospheric charged particle

fluctuations commonly induce phase changes on the order of a cycle per minute. Larger

fluctuationsare seen in observations lessthan about 15 degrees from the sun due to solar

plasma fluctuations. If the detection SNR is high enough, phase tracking with a sufficiently

high sampling rate can improve the parameter estimation. This is equivalent to an im-

proved model because phase tracking, defined in section 13, is sensitive to phase changes

of an integral number of cycles. If the SNR is high enough for detection but too low to

allow phase tracking, no verification that the phase has not traversed cycles can be made,

making the delay and phase delay rate estimation more inaccurate than the formal error

would indicate.

In summary, the model given by equations [6.1] and [6.2] is used for the a priori

estimate because of its ability to detect weak sources and because it allows the fast Fourier

transforms discussed in the following sections. If the SNR is high enough, phase tracking

can be used to improve the model and thus the parameter estimates. If the SNR is not

high enough to allow phase tracking and there is some possibility of phase fluctuations

from any source being on the order of one cycle or more, the formal errors on the final

observables will be underestimated.
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Section 7

Time Fourier Transform to Obtain

Residual Fringe Frequency

The Block II correlator passes to the user the complex correlation coefficient, given by

[2.13], at each dump interval and each data bin, typically every two seconds and four per

2 MHz channel, respectively. These data are fit to the model given by [6.1] and [6.2] to

extract the a priori BWS delay (ra), the phase delay rate (i"a) and phase (¢_)). This would

be a simple least-squares fit in the absence of cycle discontinuities in the phase. Figure 7.1

shows the phase of the complex correlation coefficient as a function of time for a single

data bin. The phase can be seen to traverse several cycles over the scan, where the slope of

the line passing through these points is the residual fringe rate. This behavior is expected

because the correlator model is generally not accurate enough to stop such a small fringe

rate: about 0.025 Hz in this case. A naive linear least-squares fit to the phases would not

produce the solid line shown in figure 7.1, but rather a line with approximately zero slope

along zero phase. Thus, cycle ambiguities must be resolved before least-squares fitting.

There are simple algorithms which allow cycle ambiguity resolution. For example,

moving each point in the time series to within a half cycle of the previous point would line

up the phases as shown in Figure 7.2. This algorithm has the disadvantage that the signal

must have a sufficiently high SNR and low residual fringe rate that there is little chance of

a time point being truly more than half a cycle away from the previous point; otherwise

the algorithm will erroneously move the next point and thus all later points in the time

series. When the SNR is moderate to low, or the residual fringe rate is large, a search

algorithm is the only robust approach to finding the residual fringe rate and phase. One

could search for the best solution by fitting the phase time series to a large range of slopes

(residual fringe rates) and intercepts (phases), while handling the cycle changes explicitly.

This is essentially the approach taken here except, without the refinements given below,

it is computationally too expensive.

Imagine subtracting a linear phase model of the form Ctm(t) = 12 t from the residual
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Fig. 7.2 Residual phase as a function of time after cycle ambiguities have

been resolved. The solid line shows the linear least-squares fit
to the data.

phase shown in figure 7.1, where fl is a trial fringe rate. If f/were close to the true residual

fringe rate, the phases would line up almost horizontally, as shown in figure 7.3. A search

for the fl which results in the best horizontal alignment is equivalent to searching for the

best residual fringe rate. The concept of subtracting a trial phase model and looking for

7-2



O
er_

Q
tO O_

Q)

O

O_ i

O

70
, , , t .

2O

Fig. 7.3

I I • . , , i , I , , , I , . . I , , , I * , . ' " I

40 60 810 1O0 120 140 160 180 200

Time (Seconds)

Residual phase after subtracting a trial linear model. The solid

line shows the linear least-squares fit to the residual phases.

a constant phase can be extended to the complex correlation phasors. Here, the phasors

are counterrotated by multiplying by e -i_t. If fl is close to the residual fringe rate, the

phasors will, on average, line up with the same phase. One can test for this condition by

calculating the amplitude of the phasor sum, which can be expressed as

A t = "_b(tj) e-it_t, , [7.1]

where _b(tj) is the phasor at the jth time point, given by [2.13]. Only when the phasors are

lined up will they sum coherently, resulting in a large relative amplitude. This phasor test

has the advantage that it does not fail when the phase is very close to ±180 degrees, where

the average phase can be calculated to be near zero (if about half the phases are around

+180 and half around -180 degrees). The amplitude can be calculated for a number of

trial frequencies, fl/c, as

Ark = _b(ti) e-ifll, tl , [7.2]

'j=l

so that the maximum amplitude as a function of k corresponds to the best trial residual

fringe frequency.
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Equation [7.2] is quite similar to that of the discrete Fourier Transform

r_--I . n

[7.31

where k = 0, 1, ..., n- 1 (see [B.1] and [B.2] for FFT definitions). Equating the exponents

in [7.2] and [7.3] gives the effective frequency tested as a function of k. Performing this sum

explicitly is still computationally expensive; the number of computations grows as n 2. If n

is a power of two or can be factored into powers of small primes, a fast Fourier Transform

algorithm (FFT) can be used to greatly cut the computation time. If n is a power of two,

the number of computations grows approximately as n log n. The FFT can be improved

for this application by defining additional phasors with zero amplitude beyond the actual

number of data phasors. This padding of the FFT algorithm with zero-amplitude phasors

results in a finer resolution in the transform space (residual fringe frequency), but does

not change in any way the result for a given value of residual fringe frequency; it only

decreases the spacing between trial values (see appendix B for details).

Fit performs an FFT on each data bin using n chosen to be a power of two between two

and four times the number of data phasors. Such an n is greater than necessary to uniquely

determine the maximum-amplitude phasor and obtain the residual fringe frequency, but

this higher density of points improves the rescaling and interpolation discussed in the next

section.
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Section 8

Rescaling Residual Fringe Frequency

to Residual Phase Rate

Transforming each bin with an FFT over time results in a new set of phasors. The

new phasor with the greatest amplitude corresponds to the best estimate of the residual

fringe frequency for that bin, given the discrete sampling of the FFT; the true maximum

may lie between two transformed phasors. Coherently summing the data across all bins

in a frequency band both increases the SNR (necessary for weak sources) and allows the

determination of the a priori residual BWS delay, r a. Such a sum involves a second FFT

across frequency, discussed in the next section, but should not be performed at this stage

of the analysis due to the residual fringe frequency dependence on bin frequency. The

physical observable desired is the residual phase delay rate, i% and is equal to the residual

fringe frequency, w/, divided by bin frequency; ? = o._f/wi, where wi is the observation

frequency of the ith bin. Because _" is constant over bins, the maximum phasor for each

bin will occur at a slightly different fringe frequency. Thus, a coherent sum over bins

should not be done until the peak amplitudes are aligned to avoid amplitude smearing.

This effect is shown in the upper plot in figure 8.1.

If w0 is the band reference frequency, a scale factor _2i = wi/wo can be defined so that

¢z//= _'o..'i= _'wo_bi = ¢_i, [8.1]

where ¢ -- w0? is the phase rate. The bin frequency dependence of the transformed phasors

can be removed by contracting the scale of residual fringe frequency by ¢i for each bin,

resulting in a new phase rate scale. Computationally, nothing is done except to reinterpret

the residual fringe frequency associated with each transformed phasor. The middle plot

in figure 8.1 shows the effect of rescaling; it has changed the spacing between points in

different bins. The final step before the coherent frequency sum is to calculate phasors

corresponding to a common set of phase rates for all bins in the band. This is done by

interpolating the phasors already in hand to these common phase rates.
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Fig. 8.1 Schematic representation of fringe frequency rescaling. The up-

per plot shows an exaggerated example of the phasor amplitude

after the time FFT for four bins. The fringe frequency depen-

dence on bin frequency causes a shift in the maximum amplitude.

The middle plot shows the effect of rescaling the horizontal axis

to phase rate. The lower plot shows the interpolated values

along a regular grid so that an FFT over frequency is possi-

ble. The density of points reflects that used by Fit; the top

and middle plots have a higher density to allow a better pha-

sor interpolation, but the density is reduced in the lower plot

to satisfy computer memory constraints. The plots on the right

show more clearly the relative spacing of points in the plots on
the left.
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The phasor interpolation results in a phasor with amplitude equal to the weighted

geometric average and with a phase equal to the weighted arithmetic average of the two

interpolating phasors. This can be calculated quickly using the following

l-h, [8,2]

where _ is the interpolated phasor, P'I and P2 are the interpolating phasors and h is the

difference in phase rate between _ and _l divided by the phase rate difference between p2

and pl. The actual calculation counterrotates both phasors by the phase of the nearest

interpolating phasor before the multiplication, and rotates the result back the same amount

to avoid the branch cut along the negative real axis when doing the complex exponentiation.

As noted in the previous section, to improve the phasor interpolation accuracy, the

density of fringe frequency points across each bin is about twice that needed to find the

maximum. The program Fit chooses the common set of phase rate points to have a

density half that found in a hypothetical bin having the band reference frequency, w0.

This reduction in the density of points is necessary to satisfy computer memory constraints,

but is dense enough to locate the maximum unambiguously. The final plot in figure 8.1

schematically shows the interpolation and density reduction. The interpolated phasors are

now ready to be coherently summed over frequency.
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Section 9

Frequency FFT to Obtain

Residual BWS Delay

The cross correlation phasors, after having each bin's time series transformed to resid-

ual fringe frequency and rescaled to residual phase rate, are ready to be combined to

increase the SNR and derive the a priori residual BWS delay. This combination is done

with an FFT over frequency.

A possible procedure at this point, though not the one used by Fit (the first, private

version of Fit did do this), is given to motivate the overall procedure. After the time

FFT and rescaling are performed on a high SNR observation, the maximum-amplitude

phasor in each bin can be used to give the best estimate of the residual phase rate, and

thus phase delay rate, for that bin; a fit to interpolate between the discrete FFT phasors

is used to obtain the best estimate. A weighted average of these rate estimates from all

bins can give an overall estimate of the residual phase delay rate for the band. This can

then be multiplied by each bin's observation frequency to give the best estimate of the

residual fringe frequency for each bin. The phase of the original time series of phasors

(before the time FFT) for each bin can be fit to a line with slope equal to this calculated

residual fringe frequency, with the fit determining the phase intercept at the scan reference

time, to (this assumes the SNR is great enough that phase tracking in time can be done

easily). Figure 9.1 shows an example of these phase intercepts plotted as a function of bin

frequency (this procedure is very similar to that discussed in section 5 on manual phase

calibration). The slope of the line connecting the points is the residual BWS delay, r a,

and the phase intercept at the reference frequency is the residual phase, ¢_, in equation

[6.2]. The slope of the line connecting the bins for a single channel is the BSA delay for

that channel. In analogy with the time sequence of points shown in figure 7.1, the cycle

changes in figure 9.1 make fitting a line difficult. The only robust method of determining

the slope is by fitting with trial slopes and searching for the best fit. Just as in the time

series case, an FFT is needed to perform the search in an efficient manner.
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Fig. 9.1 The fit phase at the reference time as a function of bin frequency.

Because the phase traverses several cycles, a simple linear least-

squares fit to these data cannot be performed. The solid line

shows the best fit if cycle changes are handled correctly.

2300

The analysis presented in the last paragraph has the disadvantage that low SNR ob-

servations will preclude the time series fit to the original data. Performing the frequency

FFT directly on the time-transformed phasors avoids this problem. The resulting two-

dimensional (2-D) FFT is equivalent to a 2-D search for best residual BWS delay and

phase delay rate estimates; the amplitude of a phasor in the 2-D transformed space indi-

cates how well that trial delay and rate fit the data.

The FFT over frequency has one complication not found in the time series FFT: the

points to be transformed using the fast algorithm must occur at integer intervals but

the bin frequencies are often selected by the experimenter to avoid even frequency gaps.

This problem can be approximately solved by noting that the lowest frequency channel in

the band has n bins which can be assigned to the first n integers. This sets the slope and

offset needed to calculate the integers corresponding to the other bins in the band. If other

bins do not lie exactly on an integer, the nearest one is chosen. This is usually a good

approximation because the channel LO frequencies are typically separated by multiples of

0.5 MHz with small offsets on the order of 0.01 MHz. This approximation is later dropped

by calculating the Fourier Transform explicitly as discussed in the next section. Integers
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not associated with actual data points use zero-amplitude phasors, and additional zero-

amplitude phasors are added to the end of the sequence to at least double its length and

to make the total number of points a power of two.

After the phasors are Fourier transformed over frequency, the original two-dimensional

time/bin frequency data will be transformed to a residual phase delay rate/residual BWS

delay plane. A search for the maximum-amplitude phasor will correspond approximately to

the best estimate of residual phase delay rate and residual BWS delay; the best estimate

corresponds to a point near the maximum phasor due to the discrete sampling of the

FFTs. The phase of the maximum-amplitude phasor corresponds to the residual phase,

¢8" The two-dimensional grid of points is usually dense enough to unambiguously find the

nearest phasor to the true peak amplitude among the discrete transformed phasors, but is

not dense enough to obtain sufficiently accurate estimates of the residual observables. A

higher density of points could be obtained by padding the FFTs with more zero-amplitude

phasors, but this option is eventually restricted by memory limitations. The solution used

by Fit is to perform the two-dimensional Fourier sums explicitly to obtain the transformed

phasor at any point; an iterative search is used to locate the true maximum-amplitude

phasor (see Appendix B). The next section covers this technique in detail.
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Section 10

Exact Fourier Transform to Obtain

Residual Phase Delay Rate and BWS Delay

After applying the time FFT, rescaling, and frequency FFT, the bin/time phasors are

transformed to residual phase delay rate/BWS delay phasors. The phasor in this latter

space having the maximum amplitude corresponds approximately to the best estimate of

the residual phase delay rate and BWS delay. The phase of this phasor corresponds ap-

proximately to the best estimate of the residual phase. Because memory and computation

constraints limit the size of the residual phase delay rate/BWS delay grid, an interpolation

is needed to find the true maximum-axnplitude phasor. One approach is to use the phasors

already calculated to fit the data with the expected functional form near the peak. This

function is approximately sin z/x in the rate direction and the delay resolution function

in the delay direction. This approach is rejected because 1) the complicated functional

form makes the fit difficult and 2) when large temporal phase fluctuations are present,

this is not an accurate model anyway. The method used by Fit is to calculate the trans-

formed phasors explicitly using a slow Fourier transform. This allows the calculation of

the transformed phasor at any point in the residual phase delay rate/BWS delay plane.

An iterative search for the maximum amplitude is then performed. This approach has the

added advantage that the approximations made to obtain the phasors in hand, namely the

phasor interpolation used in the rescaling operation and the rounding of the bin frequen-

cies needed for the frequency FFT, can be dropped in the explicit calculation. In addition,

the iterative search utilizes a fairly straightforward and robust algorithm. The primary

disadvantage of this method is the calculational cost of performing an explicit FT.

The explicit FT is designed to reproduce exactly those phasors already calculated with

the FFTs, assuming the two approximations mentioned above have a negligible effect. The

detailed steps needed to derive the form of the explicit FT can be found in appendix B,
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but the final equation can be written as (see[B.g])

rL b rSr

7"i, ----_ _-_Pkl exp2"i[ (k- 1)(27-- ntl2- 1)w l
1=1 k=l nt wo

(_1 -- Wl)(j -- nf/2 - 1)],+
J

w b nf

[10.1]

where P_t is the data phasor for the kth time point and /th bin, TO is the transformed

phasor for the ith phase deIay rate and jth BWS delay point, rtb and rtr are the number

of bins and data time points respectively, n/ and rtt are the number of BWS delay and

phase delay rate points in the respective FFT and are each a power of two, and w0, Wl

and wk are the band reference frequency, the first bin's frequency and kth bin's frequency,

respectively. Comparing the exponent phase in equation [10.1] with the model phase in

equation [6.2] leads to the following identifications (see the last subsection in appendix B

where these equations are derived in more detail):

rt t _ 2_r_'i 2_':_j [10.2]wotc (to - ti) wb

2_
i'a = --_2i

wore

¢8 = era, _ (to - tl)_, - 2_r(w0 - wl)zS,
Wb

where tc is the interval between time points, usually two seconds, Cm_x is the phase of the

maximum-amplitude phasor, to is the scan reference time, tl is the time tag of the first

point in the time series, Wb is the bandwidth of a single bin and

2xi - nt/2 - 1
xi -- [10.31

nt

x'i _ xj --rtfl2- 1

nf

The variables xi and x i correspond to i and j in equation [10.1] but can take real values

as opposed to integers (necessary for the interpolation).
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The first step in the search for the maximum-amplitude phasor is to recalculate the

transformed phasors with the exact FT for a three by three grid centered on the maximum

phasor found with the FFTs. This is done to ensure that the maximum does not change

location when dropping the two approximations noted above. In some rare cases the peak

will move, usually by just one point (if it does, a new three by three grid is calculated).

After locating the maximum amplitude in the three by three grid, the center phasor and

the nearest four adjacent phasors are used to perform a two-dimensional parabolic fit. The

amplitude of the five phasors is fit to the function

2 2
A m = alx i _ a2x i _ a3xi _ a4xj W a5 [10.4]

where the coefficients al through as can be determined from the center and nearest four

phasor amplitudes. This paraboloid has a maximum at the point

Axi +o - -o _ e Axi ( o+ - o-

.-. w -- ' \A0+ - 2A00 + A0-

where the superscript c refers to the location of the central phasor, Axi and Axj are the

spacings between the phasors in the xi and xj directions, and the A,m, terms are the five

phasor amplitudes arranged in the two-dimensional xi and xj plane as follows

A_m0 A_0 A+m0 •

A_ n_

The center of the paraboloid is taken to be the new maximum amplitude location and five

new phasors are calculated: one centered on this point and four surrounding it as shown

above. Typically, the center phasor has the greatest amplitude of these five. If this turns

out not to be true, the phasor having the greatest amplitude is chosen to be the center

and the four phasors adjacent to it are calculated. The spacing between the phasors in the

grid is also reduced to converge on the maximum more quickly. This process is repeated a
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number of times until the last iteration gives the final location of the maximum-amplitude

phasor.

If the amplitude of the final, maximum-amplitude phasor is significantly greater than

the amplitude of phasors away from the peak region, the peak is assumed to be a result of

the source signal; this defines source detection. If no source is present, or the source is too

weak to detect, a maximum amplitude phasor will still be found but it will usually have

an amplitude only about 3 times greater than the average amplitude of phasors away from

the peak region; this ratio is usually at least 10 for well detected sources.

The maximum-amplitude search just described is very CPU intensive. To reduce com-

putation time, the number of iterations and the grid spacing reduction rate have been

empirically optimized. At present, Fit reduces the grid spacing by a factor of four on each

of four iterations. A larger reduction in grid spacing results in a greater probability that

the center of the five new phasors does not have the greatest amplitude. This essentially

adds at least one iteration to the nominal four. Even with this optimization, about 25% of

Fit's total processing time is used here. Shifting some of this computational load back to

the FFTs by padding the time and frequency arrays with more zeros is less efficient. For

example, doubling the number of points in the time and frequency FFTs will increase the

computation there by about a factor of four, which at present, accounts for about 30% of

Fit's total computation time.

Once the maximum-amplitude phasor is found as a function of xi and xj, and its phase

Cm_x calculated, equations [10.2] are used to obtain the best a priori estimates of residual

BWS delay, r a, residual phase delay rate,/_a, and residual phase, ¢8. No approximations

have been made in deriving these quantities, and they are exact if the iterative search

for the maximum phasor is done with sufficient accuracy and the model shown in [6.1] is

appropriate. Typically, equation [6.1] is not the best model as discussed in section 6 and

further analysis is necessary as described in sections 12-15.
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Section 11

Phase Counterrotation by the

A Priori Model

After deriving a priori estimates for the residual BWS delay, phase delay rate and

phase, the phase of the data phasors is counterrotated by the model given in equation

[6.2]. This is done to allow more robust phase tracking algorithms, discussed in the next

section, and to permit an initial view of the phase residuals with Fit's plotting software.

If Pij is the original data phasor for frequency wi, at time t i, the counterrotated phasor,

ff/_., can be written

_. = _ije-i¢iaJ " [11.1]

and ¢iai is identical to [6.2]:

¢_3= ¢8 + r'(_ - _0) + ÷_(tj - to). [11.2]

Parameter estimates based on these counterrotated data are now residuals of the a priori

estimates, which are themselves residuals of the correlator model. The term residual should

now refer implicitly to the estimated parameters which are added to the a priori estimates

and the correlator model to obtain total observables.
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Section 12

Phasor Time Integration

This section and the following three are concerned with obtaining the final estimates

of residual BWS delay, phase delay rate and phase using least-squares analysis. Accurate

estimates of these parameters have been determined and removed (counterrotated using

[11.1] and [11.2]) from the data using the phasor model given by [6.1] and [6.2]. If the

SNR is great enough, as defined below, the phasor model can be improved by tracking the

phasor's phase as a function of time (discussed in the next section) and fitting it to the

model given by [6.2] alone (section 14). If the detection SNR is too low, a linear least-

squares fit using the phasor model is performed to obtain the residual parameter means

and covariance matrix, as discussed in section 15. The parameter means for this latter fit

are small, and would be zero in the limit that the iterative search described in section 10

were done perfectly, because the model is identical in both cases. This section is concerned

with determining which analysis path, phase tracking with the phase fit or the phasor fit

alone, should be used.

Phase tracking involves assigning an integer number of cycles to the phase of each

data phasor in the observation band so that the relative phase difference in each bin's time

series and each time's frequency series is handled correctly; an overall cycle ambiguity

for the entire band is left unresolved (phase connection, discussed in section 18, involves

determining the overall band cycle ambiguity). Some assumptions about the phase time

variation must be made to correctly assign the integer cycles to each data phasor. The first

assumption is that over a correlator integration interval the phase residuals fluctuate less

than about one radian. Unmodeled fluctuations in the phase delay rate greater than about

a radian per integration interval cause coherence loss, leave the relative phase ambiguity

between time points difficult to assign and create a phase delay rate error greater than

that predicted by the formal error. Tracking the phase with more frequent correlator inte-

grations can help solve these problems but at the cost of lowering the SNR per integration.

If the source SNR is too low, sampling the phase often enough to track the fluctuations

will fail because the phase error on each phasor will be so large that the cycle ambiguity is
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again arbitrary. The strategy used by Fit isfor the user to obtain correlator integrations

as often as possible: usually every two seconds with the present Block II configuration

(with a much greater effort,the standard Block II sampling bandwidth of 0.5 Hz can be

raised to 40 Hz). Ifthe phase errors for these highest bandwidth phasors are too large,

Fit time integrates the phasors in software until a su_cient fractionof them meet an SNR

threshold; the small fraction of data points not making the SNR cutoff is deleted. This

results in a phasor time serieswith the greatest sampling bandwidth, with each phasor

having at least the threshold SNR. Ifthe phase fluctuates by more than about a radian

over one of these software integrationintervals,the phase tracking may stillgive erroneous

results;either the data are not sensitiveenough to reliablytrack the phase or the SNR

threshold istoo high.

The phasor SNR isdefined to be R/o, where R isthe center of the phasor's amplitude

probability distribution. This isestimated using A/cr (since R is an unknown) where A

is the measured phasor amplitude and c is given by [2.9]or [2.19]. Figure 12.1 shows

the phase probability density, given by [2.15a],as a function of phase for differentSNR

levels.As the SNR leveldrops, the tailsof the distributionfrom differentcycles begin to

merge. This results in a much higher probability for an outlying phasor to have itscycle

ambiguity resolved incorrectly,even when the surrounding phasors in the time serieshave

small unrnodeled phase fluctuations.The plot indicatesthe SNR threshold should be about

two; a higher levellowers Fit'ssoftware sampling bandwidth, while a lower levelincreases

the probability of resolvingthe relativecycle ambiguities incorrectly.Empirically, the most

efficientvalue of the SNR threshold changes from scan to scan but is often between 1.5

and 2.0.

Phasor Integration

The phasors are integrated in software using a variation of equations [2.13] and [2.14]:

\

where _! is the resulting integrated ph_or, SI, CI) and II are the like=sign sine) like=sign

cosine) and invalid counts and NI is the total number of bits, summed over all phasors in
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Fig. 12.1 Phase probability distribution for various SNR values; see equa-

tion [2.15a] and [A.14]. The probability distribution for high

SNR levels is nearly Gaussian and remains clearly separated

between cycles. For SNR levels below about 2.0, the distribu-

tion flattens and the contributions from adjacent cycles become

merged.

the integration interval. Similarly, the error on each phasor component is given by

_ yr- 2hi
NLVI 2

[12.2]

where VI is the integrated valid counts, V1 = N1 - 211, and/3/is the integrated blanking

counts.
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Fit incrementally increases the integration interval and calculates the fraction of data

phasors having the threshold SNR. The smallest integration interval in which a specified

fraction (usually about 0.90-0.95) of integrated phasors exceeds the SNR threshold is used.

If the integration interval exceeds ¼ of the scan's duration or a user-specified time interval

(usually 1 minute), whichever is smaller, without the specified fraction of phasors having

the SNR threshold, Fit does no phase tracking and fits with the phasor fit. Otherwise,

the sequence of integrated phasors is phase tracked as discussed in the next section and fit

with the phase model. For long scans, the upper limit on the time integration should be

1 the scan duration because the chance of integrating over cycle slips increasesless than

with the integration interval.

If tone data are used to calibrate the cross-correlation phasors, as described in section

4, the tone accumulator counts must also be summed. The summed tone counts are used

to calculate the tone phasors using an expression analogous to [4.1]. The summed cross-

correlation phasors are then calibrated using equations [4.2] and [4.3].

Shift in A Priori Estimates

Before further analysis, the final values of to and w0 are computed. The phasor sums

and the elimination of summed phasors not having the SNR threshold have changed both

the phasor time tags, which are always centered in the integration interval, and the phase

variances, a 2_,.. Equations [3.1] and [3.2] are re-evaluated at this point in the analysis to

give the final to and w0 values. This re-evaluation induces an implicit change in the a priori

estimates; to keep the counterrotation phase ¢i_, given by [11.2], unchanged, shifts in the

a priori estimates are necessary to compensate for changes in to and wo. If primes denote

new values, the counterrotation equations become

¢i_= ¢_ + ,"(,,,, - _o) + +"_,(tj - to)

¢_j'= ¢8'+ T='(_,- _) + +a%(tj _ t'o).

[12.3]
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Setting Caj equal to ¢i_" and equating terms with the same i and j dependence leads to

¢_' = ¢8 + (_ - _o)T_+ (t_- t0)_, _

T_,= Ta+ (t_- t0)_a

[12.4]

Fit uses these expressions to adjust the a priori estimates; further references to a priori

estimates imply these modified (primed) values implicitly.
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Section 13

Phase Tracking to Improve the Model

After integrating the phasors in software so that each resulting phasor has at least the

threshold SNR at the highest sampling bandwidth, the cycle ambiguities for each phasor

are assigned. Figure 13.1 shows the residual phase as a function of time for one of several S-

band channels after removing the a priori phase estimate. The phase clearly traverses two

full cycles near the center of the scan. Because the a priori model is insensitive to integer

cycles, this solution was presumably obtained for its linear regions near the beginning and

end of the scan. If the phasor model, [6.1], were used to fit the residuals, this would be very

close to the best fit solution because the models are identical. This solution results in an

incorrect phase delay rate; the true slope after the phase ambiguities have been resolved

can be seen by eye to be about 0.014 Hz (2 cycles over 140 seconds), corresponding to

a bias in the phase delay rate of about 6.1 x 10 -12. The error in the delay direction is

more difficult to calculate; the phases of the other channels in the band are necessary to

completely analyze the BWS slope (Monte Carlo simulations using a random walk for the

phase fluctuations indicate that fluctuations on the order of a cycle per minute result in

a delay error on the order of 10 picoseconds). If the SNR had been too low to observe

the cycle changes, or if the phase changed too fast for the correlator sampling to track

(two seconds per point in this case), the large bias in the rate and perhaps a small delay

bias would go unseen, leading to an underestimate of the formal errors. A phase fit at

this point (with no phase tracking) will definitely result in a biased delay and rate; the

resulting rate would have the same problem as the phasor fit and the delay near a cycle

crossing, for example at t = 95 seconds, is large and biased because the phase in the first

three bins is near +180 degrees while the last bin's phase is near -180 degrees.

Resolving the phase ambiguities in figure 13.1 can be easily accomplished by eye, but

is much more difficult to implement in software. Several empirical algorithms have been

tried and rejected. The algorithm presently used by Fit performs reasonably well in most

cases. The algorithm makes the assumption that the unmodeled phase fluctuations are
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Fig. 18.1 Residual phase as a function of time for the four bins of a single

channel. The scale for each bin is 4-180 degrees. The phase

traverses two cycles near the scan center.

approximately equal for each channel in a band. This is not strictly true for dispersive

effects where the phase change is proportional to the inverse observation frequency or for

tropospheric delays where the phase fluctuation is directly proportional to the observation

frequency, but for the spanned bandwidths and observation frequencies typical of most

VLBI experiments, this is a good approximation. The assumption is also made that, at a

given time, the phases of all bins in the band are approximately equal. This implies the

instrumental channel-to-channel phase offsets must be calibrated with either instrumental

phase calibration discussed in section 4, and/or a manual phase calibration explained in
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section 5, for this phase tracking algorithm to work properly (note that manual phase

calibration will remove linear trends caused by the above media effects; see [5.28], for

example).

The first step in the phase tracking algorithm is to form a frequency averaged phase,

_oj, defined as

[13.11
i

where the sum runs over all frequency bins in the band and Pii is the complex data phasor.

This phasor sum avoids problems near a cycle crossing because it is insensitive to integer

cycles, and results in a more accurate phase from averaging many frequency bins. The

problem is now reduced to phase tracking the _oI to obtain an average cycle ambiguity at

each time point.

The phase ambiguity of _oj at time tj is resolved by fitting the previous three points,

_oj-3, _oj-2 and _oi_1, to a line and calculating the expected phase at tj. The integer

number of cycles needed to move _oi to within ±½ cycle of this predicted phase is taken

to be the cycle ambiguity. This integer ambiguity is then applied to each frequency bin in

the band being analyzed. Finally, each bin's cycle at tj is adjusted to be within ±_ cycle

of the average phasor's phase, the phase tracked _oj. This process is repeated for each time

point in the scan resulting in a cycle ambiguity assignment for every integrated phasor.

Figure 13.2 shows the result of phase tracking for the same channel shown in figure 13.1.

These phases are now fit with the phase model discussed in the next section.
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Section 14

Least-Squares Fit of Residuals:

The Phase Model

Two different models can be used to obtain the final parameter estimates. This section

describes a fit to the phase model given by [6.2], while the phasor model fit, given by [6.1]

and [6.2], and identical to the a priori model, is described in the next section. Fitting to

this model requires the phasor cycle ambiguities to be correctly assigned as described in

the previous two sections.

The final parameter estimates are obtained using a linear least-squares fit to the phase

of the data phasors using the model

¢_ = ¢; + Tr (_ - _0) + _r_(tj - to), [14.1]

for the ith bin and jth time point. The parameters to be estimated, ¢_, _.r and _.r, are the

residual phase, BWS delay and phase delay rate, and the superscript r denotes the residual

values after removing the a priori estimates with the phasor counterrotation. Note that no

media or instrumental terms are included here; only the three parameters indicated above

are estimated in this analysis. The effects on these parameters from a linear troposphere

model are given at the end of this section; the effects from a more general dispersive and

tropospheric model are calculated in the consider analysis presented at the end of section

17. Using a least-squares analysis Is], the following matrices can be defined:

X = r r [14.2]

_r

is the matrix of parameters, and

/Y"_-- ¢2 [14.3]
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is the matrix of observations (the phase of the integrated phasors) where n implicitly

includes all time points in all bins. The design matrix, which is the matrix of partial

derivatives of the model, [14.1], with respect to the parameters, [14.2], is given by

I i COl -- WO Wl(tl -- to) 1

1 w2 - o_0 w2(t2 - to) [14.4]4= : : i "

1 w_-wo wn(t_-to)

The weight matrix, _, is the inverse of the observation covariance matrix and is assumed

to be diagonal for now:

1/oi 0 ... 0 /

0 1/oi ... 0
: -" "'- i

0 0 1/oL

[14.5]

where a_, is given by equation [2.15c] (off-diagonal elements could be included, for example,

to model temporal phase correlations due to tropospheric fluctuations). The ._T_._ matrix

is given by

[14.6]

where the sums run over all time and frequency points in the band. The S-band ._T_._,

for example, can be written in terms of the symbols defined in Appendix C (refer there

for variables not defined in this text)

So
AT ]_A = Si - woso

Ss - toS,

Sl - oJoSo

S2 - 2woS1 + wo2So

So - toS2 - woSs + wotoS1
$5 - toS1 I

So - toS2 - woSs + wotoS, ;

SO- 2toSo + t_s2
[14.7]
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a similar expression is used for other frequency bands. The inverse of this matrix is the

covariance matrix for the parameters in the X matrix, [14.2].

Calculating (_T_)-I explicitly allows the minimization of the parameter variances

by appropriate definition of to and wo:

S29 - 2woSt3 + wo2Sto

(_T]_)_)-I __ 1 -St3 + woSto
Sdo

$16 - woStl

-St3 + woSto S,6 - woStl

JS,o - St1

- Stl So2

[14.8]

where all wo dependence is shown explicitly and all to dependence is contained implicitly

in the St, variables defined in [C.10]. Comparing this with the definition of the covariance

matrix

a_ °

(.4T'kt)._) -1 = _ PCrG'O¢° p#ra¢°ar P¢#°¢°G+ I
a2r pr_.GrG{,

2
pr+G._Or G_

[14.9]

leads to the following:

o_° = S29- 2woSt3+ wo2Sto
Sdo

2 S09 -- 2toSo6+t_So2
G r

Sd0

-St3 -'}- woSto

P cbr
o2

S16 -- woStl

2
PC{" Sdo °_ °_

--Stl
Pr_ -- 2"

[14.10a]

[14.10b]

[14.10c]

[14.10d]

[14.10e]

[14.10f]

These equations lead to the following conclusions:
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* The phase variance is minimized if to = Ss/S, and wo = Sts/Sto. This definition of

wo simplifies to wo = S1/So for the to definition given. The phase variance is l/So at

the minimum.

* The delay variance is minimized by to = Soe/S02 and is equal to S0/S02 at its

minimum.

• The rate variance does not depend on to or wo; it is always equal to S02/Sdo.

• The phase-delay correlation coefficient is zero for wo = St3/Sto. This simplifies to

wo = S1/So for either to = Ss/S1 or to = S06/S02.

• The phase-rate correlation coefficient is zero for wo = $16/Stl. This also simplifies

to wo = S1/So for to = Ss/S1, but wo is undefined for to = S06/S02.

• The delay-rate correlation coefficient is zero for to = S06/S02.

From these facts, there are only two viable candidates for the definition of to: to = Ss/S1

or to = S06/S02. The latter appears to be the better choice because it both minimizes

the delay variance and makes the delay-rate correlation vanish. This definition must be

rejected, however, because this to is often numerically far from the center of the scan;

sometimes it even appears before the scan start or after the scan's end. For this reason,

Fit uses to = $5/$1 as the reference time definition. Because there is only one time

reference for the scan, to is calculated from the highest frequency band data. Thus, if X

band is the highest frequency band,

to = xs/x1 [14.11]

(see equation [3.1] and [C.1]). For the band frequency reference, Fit uses

WOX ---- .Xts / Xto [14.12]

(see [3.2] and [C.10]), and a similar expression for other bands, because this is the best

definition in all cases above except for the phase-rate correlation. Even that case simplifies
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to the optimal value with the to defined in [14.11] for the highest frequency band, and is

close to optimal for other bands. Fit uses [14.12] to compute w0 in case the user overrides

the default to value given by [14.11] or when the band in question is not the highest in

frequency. For reference, when to and wo are given by [14.11] and [14.12] (as is the case

for the highest frequency band), (AT_A) -1 becomes

(! 0 0}Xo (X, X,o - Xs X,6)
(AT_oA)-' = X[Xao "

-- XoX16 X02

X1Xdo Xdo

-XQXI6 [14.13]
X1Xdo

The matrix (._T_I)_)-I(_T])_) gives minimum variance, unbiased estimates of the

parameters in X. A T_7 is (see [C.2])

¢_ Sa

ATe5 r = _, ¢i(w_.2- wo) = Sb-woSa • [14.14]
os_

¢_,(t_ - to) s¢ - to&
a 2¢_

Multiplying this by [14.8] gives (see [C.7 l, [C.8] and [C.10])

so that

S_. S_3

[14.15]

CD = S--_n(Sos " S.1) + wo rr [14.16a]

rr _ 1 (_ . Sa2) q- to¢ "r [14.16b]
&0

_, _ 1(_+. $.3). [14.16c]
Od0

14-5



This explicitly shows the delay dependence on the phase delay rate and the phase depen-

dence on the delay (and thus rate) are as expected. Once the fit values are obtained using

(_T_)-I._T_.T, they can be added to the a priori values to give the final estimates for

the residual BWS delay, phase delay rate and phase. Summing these residual values with

the correlator model values, discussed in section 16, gives the final total observables for

each band.

The band amplitude is not determined from the phase fit given in this section, but

it can be determined separately from a weighted average of all phasor amplitudes in the

band given by

A_y / 1Ab = NL _.. :5 ' _.. o.5, , [14.17]
tj ii *3 ii

--
tl *i

where NL is the number of lags used during the Block II correlation, A_i is the bandpass-

corrected phasor amplitude, a_. is the amplitude variance, and i and j run over all
'3

frequency bins and time points respectively. The primes denote the amplitude and its

variance after a bandpass correction; A_y =AiiBi and aM. = a&iBi, where Aq is the
t5

phasor amplitude, a&s is given by [2.16c] and Bi depends only on the bin number within

each 2 MHz channel, and accounts for one source of instrumental amplitude loss[9].

After fitting, the data are counterrotated by [14.1] using the estimated residual param-

eters. The counterrotation is done in the exact manner discussed in section 11 using

_.c = _.e-i¢_i [14"181

and ¢iri as the counterrotation phase, instead of ¢i_" in [11.1]. This final counterrotation is

done to place the data phasors in their final residual form, making residual plots easy to

generate by Fit. Figure 14.1 shows the final residual plot corresponding to those shown in

the previous section.
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Consider Analysis: Linear Troposphere Model

This subsection calculates the effects of a temporally linear troposphere model on the

parameter estimates; a more thorough treatment of media effects on parameter estimates

is given in the last subsection of section 17. This simple example illustrates that consider

errors having the same form as an estimated parameter affect the estimated parameter

directly. Assume the model phase, tm¢_5 ' is given by

¢_ = ¢o + 7-(_i - wo) + _'wi(b - to) + w,_'", [14.19]
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where

ru _ _t + _t(t i _ to) [14.20]

-_t
is the tropospheric delay, and _t and r are parameters modeling the constant and linear

trend of the troposphere. This expression for ¢ii can be substituted into [14.3] to calculate

= (_T _._)-I _T _-, [14.211

where X is the matrix of estimated parameters corresponding to X. A shortcut to this

computation is to notice that the model phase can be rewritten as

= (¢o+ (T+ + (*+ to). [14.22]

Written in this form, it can be seen that [14.3] becomes _" = _y where the matrix y is

¢0 + rtwo )
y = T+_t . [14.231

_.+}t

Substituting _y for _r in [14.21] leads immediately to X = y. In other words, all constant

terms in the model phase pass through the least-squares formalism into the residual phase

parameter, all terms (independent of i and j) multiplying wi - w0 pass into the delay, and

all terms multiplying wi(tj -to) pass into the phase delay rate. Any additional terms in the

model phase which cannot be put into one of the three categories above (for example, terms

in the last line of [5.31]) will impact the parameter estimates in a more complicated manner.

The consider analysis of section 17 will examine such additional terms. In summary, once

[14.19] is put into the form [14.22], the observable effects can be seen immediately:

¢0 _ ¢0 + rtwo

r--_ r+_ t

-_t
f ---*/" + r .

[14.241

From this specific example, it can be seen that the troposphere delay and rate enter the

observables as expected.
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Section 15

Least-Squares Fit of Residuals:
The Phasor Model

This section describes a fit to the data using the phasor model given by [6.1] and [6.2],

and is typically used when the SNR is too low to accurately track the phase. The primary

results of this fit are the parameter variances. Because the model used here is identical to

that used for the a priori estimate, the estimated parameter means are usually very small,

usually on the order of 10 femtoseconds for the delay, 10 attoseconds/second for the phase

delay rate, and 1 millidegree for the phase (for detected sources); the fit would give zero

means in the limit that the a priori estimation were done perfectly. The numbers above

indicate the a priori estimate is usually sufficiently accurate, and improving the search for

the maximum amplitude phasor, described in section 10, is computationally inefficient.

The final parameter estimates are obtained with a least-squares fit using the model

= + + [15.1]

where .Mri is the model phasor and Ab, ¢_, r r and _" are to be estimated (see [14.1]). This

model must be linearized by expanding it about trial estimates which are assumed to be

close to the final, best estimates. Call the trial parameters -Ab, _0, _ and _- and expand the

model about them to obtain

•_Ii _ _'Ii + ei$'[(Ab -- Ab) + iAb (¢D -- _0) + i(Wi -- ¢00) (r r -- _)Ab

+ i03 i (ti -- to)(# r -- _')2_b]

[15.2]

where

_I_ = _b ei_i = Ab ei[_° + t(wi - wo) + wi _ (ti - to)].

This can be rewritten as

(M_i- 1)___--_b(Ab--_ib)

[15.3]

+i(t¢_-C_o)+i(wi-wo)Crr-_)+iwi(tl-to)(#r-_'). [15.41
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Changing to matrix notation, and using the same formalism as in the previous section, we

can define the following:
v

x = ¢_ - $o
r r _ _,

_.r__.

[15.5[

I P_ 1"_

-_--- 1
M2

-_- 1)
Mn

I A.---lei(@1-_1)- 1

Ab

A.-_ei(@2-$z) - 1
Ab

_bb ei(¢"-$") --1

[15.6]

/ 1___ i i(wl-w0) iwl(tl-t0)/

_q= _b i i(w2 w0) iw2(t2 to)

i i(wn wO) iw,_(tn to)
Ab

[15.7]

1/a2A, 0 ... 0 I

o 1/_k ... o
= [15.s1

• : ".. :

o o ... 1/(,L

where Ai and ¢i are the amplitude and phase of the ith data phasor, Pi, a_ is given by

equation [2.16c] and i implicitly includes all time-bins points. For complex design and

observation matrices with real parameters, the covariance matrix is (AT_qR + _qT_gAi)-I

and the minimum variance, unbiased estimate of the parameters is

[15.9]

where the R and I subscripts refer to the real and imaginary parts. The following matrices
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are given for reference:

1 1r-_ _ o o o
Ai

w,(t,--tO)
0 _ _2

A i A i A i

o E _,-_ E (_,-_o)_ E _'¢'''-_o/¢_'-_o)
0-2 cr 2

A i 6A i A i

¢a2(ti--to) 2o _,(t,-to) _,(_,-,,,o)(t,-to) _ ,,_0-2 0-2
A i A i A i

Ai cos(¢i - ¢_i) 1

1 Ai sin(¢i - 4;i)

N E °k

lb _--_A' (w' - w0)_in(¢i - ¢_/)

E °k

[15.10]

Because the model is nonlinear, the fit must be done iteratively; the estimates obtained

for _, which are the differences between the final values and the trial values, must be added

to the trial values to become the new trial estimates. The process is repeated until the

elements of X are sufficiently close to zero. Fit iterates this process 10 times; this is more

than enough for the parameter estimates to converge, while the computational cost of

performing too many iterations is small.

Although the amplitude is obtained here as an estimated parameter, it is not passed

to Modest. The amplitude sent to Modest is given by [14.17] (see reference 9 for more

details).

Once the final fit values are obtained, they can be summed with the a priori estimates

to give the final estimates for the residual BWS delay, phase delay rate and phase. Sum-

ming these residual values with the correlator model values, discussed in the next section,
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gives the final total observables for each band. After fitting, the data are counterrotated

by the phase model using the values obtained here. The counterrotation is done in the

same manner given in sections 11 and 14 using equations [11.1] and [14.18]. This final

counterrotation is done to place the data phasors in their final residual form, making it

easy for Fit to generate residual plots.
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Section 16

Correlator Model Restoration

to Obtain Total Observables

The quantity of interest for the fitting package Modest is the retarded baseline delay,

given by

T_Ct) = _k. [_C t + T_Ct)) - _lCt)], [16.11
¢

and its time derivative, where _'i(t) is the location of station i at time t, _c is the unit wave

vector in the direction of propagation, and c is the speed of light; media effects are not

considered here but are included in the actual correlator models. The retarded baseline

delay is obtained by first calculating station i's model delay, r_ - k • _'i/c, and its time

derivative, for each station i. The difference between these quantities for the two stations

gives the model symmetric baseline delay, r_(t), and its derivatives. These are combined

with the a priori and least-squares residuals to give the measured symmetric baseline delay,

?b, and rate, rb. Finally, corrections for the retarded baseline are applied giving the total

retarded quantities, r[ and/-_', appropriate for Modest. The rest of this section is devoted

to the details of this calculation.

The Block II correlator passes to the user the model delays actually applied to the

station bitstreams at specific reference times. These reference times are at the start,

finish and at two intermediate times of a user supplied dump interval, where a typical

interval might be about 20 seconds. The model delays at these four time points (from the

appropriate dump) are fit with a cubic polynomial to derive the model delay and its first

three time derivatives at the scan reference time, to. Note that, at present, Fit uses only

the four points from a single dump interval in the cubic polynomial fit so that to will be

randomly distributed across the interval; no attempt is made to use points from adjacent

dumps which may be closer to to than those used (if this were done, to would always lie in

the center third of the 4-point interval).

The maximum error introduced in the delay and its derivatives by this method of

interpolation can be estimated by calculating the exact geometric delay and its derivatives
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Quantity

MAXIMUM ERROR FROM MODEL INTERPOLATION

10 Sec Dump 20 Sec Dump 30 Sec Dump 60 Sec Dump

4.8 × 10 -18 sec

8.9 x 10 -17

6.4 x 10 -18 sec -I

3.0 × 10 -18 sec -2

5.1 × 10 -17 sec

1.1 x 10 -16

2.4 x 10 -17 sec -1

6.0 × 10 -18 sec -2

2.5 × 10 -16 sec

2.0 × 10 -16

5.5 × 10 -17 sec -1

9.0 × 10 -18 sec -2

4.0 × 10 -is sec

1.2 x 10 -1S

2.2 x 10 -16 sec -1

1.8 × 10 -17 sec -2

Table 16.1 The maximum error in the retarded station delay and its deriva-

tives due to model interpolation for example dump intervals.

at the scan reference time and differencing these values with the fit values. This calculation

can be done as a function of baseline orientation to the source position and as a function of

the scan reference time within the four time points in the dump interval. Table 16.1 shows

the maximum error found for the delay and its derivatives for several example dump

intervals. It will be shown below that these model interpolation errors dominate other

systematic effects in the model restoration procedure. Note that these are the maximum

interpolation errors expected when calculating the correlator model at a specific reference

time; they do not account for errors, if any, which are caused by the application of this

model at the correlator.

The station model delay (for station i), r_" (t), applied to the bitstreams by the Block

II correlator is a retarded delay designed to cancel significant effects in the fringe phase

caused by offsetting the bitstreams by the quantized model delay (see equation (7.11) in

reference 2). It is defined in terms of the unretarded station delay, r_(t), as

rs_'" (t) = r,_. (t)(1 - f_i (t)) [16.2]

(see equation (6.2) in reference 2; the equation given here is different, but is the actual

expression used by the Block II correlator). This retarded station delay should not be

confused with the retarded baseline correction discussed below.
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The retarded station delay and its derivatives are given by

r_r(t) = r_(t) - r_(t)/_(t)

•- = --, -" "--" - T,, (t)r,+ (t) r,, (t) - %, (t) r,, (t) -,,,2

_,, (t) = _-,,(t) - _+,(t) _,,(t) - 3,-,,(t) _,,( )

_r(t) = _:(t) + 0(4).

[16.3]

Terms having four or more time derivatives Clumped into 0(4)) have been dropped. To

calculate the unretarded delay and its derivatives requires that these equations be inverted

rn. rrl.r

so that _'8, (t) and its derivatives are functions of r+, (t) and its derivatives. After some

algebra, the inverse equations are found to be

r_(t) = r_'(t) + r_r(t)_'(t) 4- 2r_rCt)_r2(t) 4- r_r2(t) _rCt) 4- 5r_'Ct) ÷_r3(t) 4- [16.4]

_-Tr3(t)_-';?r(t) + s+-?r2Ct),,Tr(t) _7,rCt) + o(4)

• rn : _.rnr{t _ rnr¢ t, .... .rr_r2 .... 3 T rnr t .mr -mr+-,,(t) ,, ,,+r,, t J+,, (t)+,,, (t) +_',, Ct) +6 ,, (),-,, (t) r,, (t) +

r_r2(t) ?_r(t) + O(4)

_Ct) = _7,'(t) + T_rCt)77,'(t) + 3+-?,'(t)_?,rCt)+ 0(4)

__ii (t) = ?_ir (t) + 0(4)

These expressions, neglecting the fourth-order terms, are used by Fit to obtain the unre-

tarded station delays and their derivatives.

To estimate the errors made by using [16.4], equations [16.3] were calculated to fourth

order in time derivatives and inverted exactly to that order. The contributions from

the additional fourth-order terms were estimated by substituting the maximum values of

delay and its derivatives for earth-bound stations, neglecting correlations between these

maximum values. There are five forth-order unretarded delay terms, the largest of which

are 487_2(t)_r2(t)_r (t) and 14T_'(t)_r4(t). The sum of the five terms is always less
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than about 6.4 x 10-23 seconds. There are also five additional fourth-order rate terms

with the largestbeing 31T_r (t)?_r2(t)?_r(t). The sum of the fiverate terms isalways less

than about 1.6 × 10-21. The additional fourth order terms for ?_(t) and _(t) contribute

lessthan 2.6 x 10-20 sec-I and 2.7 x 10-19 sec-2, respectively.These numbers are allwell

below the interpolation errors shown above in Table 16.1 (and higher order terms should

be much smaller), indicating that they can be safely ignored.

The unretarded station model delays are differenced to form the model symmetric

baseline delay and rate:

[16.5]

where the station indices are shown explicitly. This is combined with the a priori and

least-squares residual estimates to obtain the measured symmetric baseline delay:

_bCt)= _f'Ct)--_'(t)--_'(t),

_b(t)= _'(t)--_'(t)--_'(t),

[16.6]

where r a and as are the a priori estimates and r r and _r are the least-squares fit residuals.

The minus signs are necessary to change r a and r r (in the correlator sign convention) into

the Modest sign convention. Modest requires delays to be in the retarded form shown by

equation [16.1].

Expanding [16.1] and taking derivatives give expressions for the retarded baseline delay

and its derivatives:

i r2--- 1 r3--
if(t) = rb(t) + r;(t) ÷,2(t) + _-b (t)r,2(t ) + _'b (t} V:,2(t) + 0(4) [16.7]

÷,,(t) + _;_(t) _,_(t)+ _;(t) _;(t) _o,(t) + 0(4)g (t) _b(t) % (t) (t) % (t)

_;(t) = _b(t)+ _;(t) 7,_(0 + 2_;(t)_,_(t) + 3;(t)+,_(t) + 0(4)

_(t) = r'b(t) + O(4),
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where rs2 (t) is station two's delay. These expressions can be substituted into themselves

while dropping fourth-order terms to eliminate the retarded terms on the right. This is

done iteratively to give

r/(t) = rb(t) + rb(t) rs2(t) + rb(t) Ts22(t) + rb(t) i"823(t) + lrb2(t) r82(t) + [16.8]

7,,(0 4- O(4)

_-_(t)= _-b(t)+ _-b(t),',2(t) + _'b(t),',_2(t)+ ,b(t)_,_(t) + ,'b(t),_b(t)_82(t) +

2Tb(t) /',, (t)_,,(t) 4- lrb2(t) _'8,(t) 4- 0(4)

_-; (t) ----_'b(t) 4- _'b(t) i's2(t) 4- rb(t) _82(t) 4- 2_'b(t) _s_(t) 4- 0(4)

_:_(t) : _:b(t) 4-0(4).

Equations [16.6] can be substituted into the first term right of the equal sign in the delay

and rate equations of [16.8] to give

,$(t) = ,7"(t) - ,-'(t) - ,-'(t), [16.9]

+;(t) = _;_'(t) - _'(t) - _'(t),

where

r_"" (t) - r_'Ct) + Tb(t)/" (t),2 + rbCt)/'_(t) + rb(t)_-_3Ct) + irb2Ct)_"_ (t) +

_rbg(t)+_(t) "'7",,(t) + _ Tb3 (t) "'_"T,,(t)4-0(41

÷7"(t) _-;"(t)+ _bCt)%(t)+ _bCt)...2 -.. -..= "'* T82 (t) 4.rb(t) T82(t ) 4" rb(t)_b(t)rs2(t ) 4-

2,-bCt)i-s_(t)L'_(t) + _,-_(t)L_Ct)+ 0(4)

[16.10]

and _"_ (t), _(t) and _;"_(t) model _s_(t), _ (t) and _ (t). Equations [16.9] give the retarded

delay and rate for each band in the final form acceptable to Modest. Note that the a priori

and residual quantities are applied to the symmetric delay before retardation in equations
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[16.6]; this is formally correct to avoid small retardation errors when the measured residuals

are large, but the difference is usually negligible in practice.

The total delays and rates obtained here for different frequency bands can be com-

bined to eliminate dispersive effects caused by the presence of charged particles along the

observing raypaths. This combination is described in the next section.
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, Section 17

Charged Particle Calibration

The radio signal received at the two VLBI stations is corrupted by the presence of

charged particles along the observed raypaths. These charged particles retard the observed

single station phase by ks�w, where ks is proportional to the total electron content (TEC)

along the single raypath and w is the observation frequency (a conversion factor between

TEC and ks is cre/27r = 1.3445 x 10 -7 m2cyc2/sec, where re = 2.8179 x 10-15m is the

classical electron radius). The two-station interferometric phase is advanced by

¢°p= -k(t)/_, [17.11

where k(t) is proportional to the difference in TEC along the two raypaths in the same

sign convention (either Block II or Modest) as ¢cp. Higher order terms proportional to

w -2 and ¢o-3 have been dropped from this equation. These terms can be important at

lower frequencies, but are usually negligible for observations at S and X-band frequencies

(2285 MHz and 8440 MHz, respectively) assumed here. The development given below will

therefore be valid for higher frequency measurements such as X/K-band observations.

The phase shift shown in [17.1] induces a change in the group delay, phase delay and

phase delay rate given by

rCp = 0¢cp k(t)
Ow w 2 [17.2a]

rl p _ ¢cP _ k(t) [17.2b]
6d W 2

Or_" k(t) [17.2c1_;_- 57 - _, "
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Dual Frequency Calibration

The single-frequency expressions given by [17.2] can be used to combine the total

observables from two frequencies into a single observable, free of dispersive effects. The

S-band group delay in the presence of charged particles is given by

rs = f 4- r el" [17.3]

=f + k/_L,

where _ is the delay free of charged particle effects, k is k(t) averaged over the scan

duration, and ¢O2sris an S-band reference frequency for the delay observable, derived below.

The charged-particle corrected delay (or S/X corrected delay), rs/x, can be formed with

a weighted linear sum of the S and X-band delays. If Csr and Cxr are the S and X-band

delay weights, using equation [17.3] gives:

Ts/x = Csr rs + Cxr rx

= Cs,(_ + k/_'L) + Cxr(_ + k/_4, )

= _CCs,+ Cx_)+ _CC_,/_L + Cx#_L),

[17.4]

where rs and rx are the total S and X-band BWS delays. The S/X corrected delay can be

made equal to _ only if the following two equations hold:

Csr 4- Cxr = 1, [17.5]

Csr Cx_

_L + _b - o.

This leads to expressions for the delay weights in terms of the reference frequencies:

-wL Cx, = "4r [17.6]
c_, - 04, - _L _ob - 04,"

The other linear combination similar to [17.4] can be used to estimate k:

[¢s/x = Csk rs 4- Cxk rx [17.7]
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where k.s/x is the calculated estimate of k, just as rs/x is the calculated estimate of _. For

ks/x to be equal to k, the following must hold

Csk + Cxk = 0, [17.81

Csk Cxk
--+ --1.
W_r W2xr

This leads to

2 2 2 2

¢OSrWXr Cxk -- --WsrWxrcsk- - wL W x,- w2,,"

The phase delay rate equivalent of equations [17.4] and [17.7],

[17.9]

_'s/x= Cs_ i's+ Cx_-ix

ks/x = Cs£ ¢s + Cxk ¢x,

[17.10]

[17.11]

and the equivalent of [17.3] lead to similar expressions for the S/X corrected phase delay

rate and time averaged it(t) weights:

-Ws2_ W2x_.
2 Cx_ -- 2 2 [17.12]

Cs+ -- W2x_" -- Ws_ Wx_ -- Ws_

2 2 2 2
-Ws_Wx_ Ws_Wx_

2 Cxk -- 2 2 ' [17"131
Cs_i -- Wx _2_ Ws _ Wx _ _ ws _

where W2s_ and W2x, are the S and X-band reference frequencies for the phase delay rate

observable, derived later. The phase delay equivalents of [17.4], [17.7] and [17.3] lead to

the phase delay weights, and a second expression for the k weights:

2 w_,, [17.14]--WSrP CxrP : 2
CsrP = W2rp _ WSrp2 W2XrP _ WSrp

2 2 2 2
--02srpWx rP WX _'PWS rP

CskP W2r,--W 2 CxkP : W2r, ' 2 ' [17"151s_'p -- Wsrp

These two expressions are given for completeness, but [17.14] is only needed for phase

connection (see section 18) and [17.15] is not usually useful.
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Consider Analysis:

Dispersive, Tropospheric and Manual Phase Calibration Effects

The effects on the S/X corrected delay, phase delay rate, and phase observables caused

by dispersive and tropospheric media effects as well as manual phase calibration processing

effects are calculated here. The last subsection of section 5 derives the expression for the

model phase, given by [5.31], which includes these effects. Equation [5.31] must be modified

to include the counterrotation procedure given in section 11, by subtracting ¢iai from it.

The residual model phase just before fitting (section 14) is given by

[ ( +') ]¢+_= ¢0 - ¢; + _0(__- _*) - _0 r:, _-_ - ¢8

+ (+-- r+*L+ _t _ _t, + __ _
¢,,:m

k - _* ]+(ti - to)

[17.16]

+°)C++- +0)+ (++ +_- +")++(tj- +0)

t"

* * * kY .tr+ _*tx_++ _;_t2__ _,(t_++ ts+- t;_)- - + o,+,;,
¢_i u)i wi

where Aw0 is given by [5.32] and w;, derived later, is [17.29] evaluated for the manual phase

calibration (MPC) scan. Note that ¢0, r and _ represent the total residuals (residuals about

the correlator model) without media, instrumental or manual phase calibration effects. The

effect on the total band observables induced by combining many time/frequency points can

be calculated by substituting the above equation into the linear least-squares formalism,

given by equations [14.3], [14.14] and [14.15]. It will be shown below that minimizing the

dispersive effects on the final S/X corrected observables leads to expressions for w 2 w 2
St, Si',

2 and their X-band counterparts. The phase fit is used in this consider analysis because_SrP

it is used for the high SNR scans; observable variances from low SNR scans are presumably

dominated by system noise and are insensitive to the small difference in consider errors

between the phase and phasor models.

Equation [17.16] is substituted into the ._T_.7 matrix shown in [14.14]. Note that i

in [14.14] implicitly runs over all time and frequency points while i and j run over these
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points in [17.16]. The parameter estimates are derived by multiplying this by [14.8] to give

T" - Sdo . [s,=+ tog,,] , [17.17]

where g_ is similar to S# in [C.8] except the phase in the expressions for Sa, Sb and Se in

[C.2] is given by [17.16]. Expanding gives

[17.18]

- L3- L, + Lo - + gv.

and the S terms are given by [C.6] and [C.12]. Note the last six terms correspond to the

non-linear part of the dispersive and tropospheric models. Substituting this into [17.17]

and using [C.9] gives

* * 75

CD + ¢_ = [¢0 - ¢0 + wo( rt - _t,) _ Aw0r¢,] - k Skcb+ fe*Sk.¢-- kSk¢+ k Sic.,b + Sa¢, [17.19]

7'

_-"+ _-_= [r - T:,+ (_'- _'*)] + f_sk.- fc*sk., + [,sk.- k Si,.,.+ S_,,
'7"$

{., + {_, = ({_+ _.t) - 7¢Sk_ + 7¢*Sk._ - ]¢Sj,_+ k Si_._+ S:_.

Undefined quantities are given by equations [C.13]. The first group of terms in each

equation shows the effects on the parameter values from a linear troposphere model, the

second and third terms give the effects from a constant dispersive model, the fourth and

fifth terms show the linear dispersive effects and the last term includes the non-linear effects

from both the troposphere and dispersion models. The signs of the dispersive terms in

the delay equation of [17.19] are different from those in the other two equations, reflecting
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the sign difference in the rightmost terms of equations [17.2]. Note the a priori values

passed through the least-squares analysis correctly, indicating the counterrotation given

by [11.2] is done correctly (actually, this had to be the case since the design matrix, [14.4],

is the matrix of partials of [14.1] which has the same form as [11.2]). Also note the delay

and phase are affected by the difference in the average tropospheric delay between the

MPC scan and the scan being analyzed, while the phase delay rate is only affected by the

-rt*

troposphere rate of the analyzed scan and contains no r term; this is desired so the time

derivative of the delay effect is equal to the phase delay rate effect.

Care is needed in maintaining the two sign conventions coming together here: the

Block II, station 1 minus station 2, system and the Modest, station 2 minus station 1,

system. Residual variables, which include those calculated up through section 15 in this

report, are in the Block II Convention. Total variables, those with the correlator model

restored as described in the last section, are in the Modest convention. All expressions

in this section are valid in either sign convention as long as all quantities are used in the

same convention. To avoid considerable switching between systems, all variables in the

remainder of this section are to be interpreted as being in the Modest sign convention. To

form total observables here, the left side of [17.19] is added to the correlator model values.

This is equivalent to [16.6] if the minus signs are absorbed into the residual and a priori

observables with the troposphere and dispersive modeling, [5.21], by interpreting these to

T _r

be in the Modest convention. Thus, k,/_, ki, _t, r , rtr, and r*_, along with all residual and

a priori variables, are assumed to be in the Modest convention for the remainder of this

section.

Adding the correlator model to equations [17.19] so they can be expressed in terms of

total S and X-band observables gives:

Cs = Cos - ¢_s + Wos( _t - _t,) _ Awosr.(s) _ _ Sk# + k*Sk.# -- kSk# + ]¢*Si: _ + Sac [17.20]

= - + - #*) + k sk,- f: +  sk, - + s,,

_'s = r + r - fc Sk_ + f¢*S_._ - kSk_ + k Sk. _ + Sa_
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Cx = [box- ¢_x + Wox( _t - _t,) _ AWOxL*iix)- k, Xk¢+ fC*Xk.¢-- _:Xk¢ _+ &*Xk.¢+ Xa¢ [17.21]

rx = _ - rc*,x_+ (_t _ _t.) + _ xk,- Pxk.,+ kxk,- _ x_.,+ x,,

ix = r + r::t - k Xk_+ k,*Xk*_- kXk_+ k Xi¢_+ X_,

where AW0s and Awox are the S and X-band AwO defined by equation [5.32]. The variable

on the left and the first term on the right of each equation above are total observables.

The total observables with a tilde indicate quantities without media, instrumental or MPC

effects:

[bos = wosr_" + Cos + 2rrNs

[box = COoxr_ 'r + Cox + 27rNx

_-==r_'r +r

_--_'r +_r,

[17.22]

¢0s is, for example, the S-band ¢0, r_ r is the correlator model given by [16.10], and Ns and

Nx are the integer number of S and X-band cycles needed for phase connection (see next

section). Equations [17.20] and [17.21] can be substituted into the linear combinations

such as [17.4] to remove dispersive effects:

2 *

, COxrArd

1 [ _ (WxrlWxr _ WsrlWsrJ+ 4, -_L (_ P)C4,Xk, -_L&,) + _* _ " *_ _ " *_'

4- ]¢(w2rXic r - ¢O2srSicr) - _¢*(¢Z2xrX]c.r - W2rS]c.r) 4- (oJ2xrXer - ¢Z2srSar)]

[17.23a]

_' -rt
islx - r = r 4- 1 [-(_ _')(4_xk_ =- - - _&,) _(_+x_ =- - ws+S]_) [17.23b]

+k 2 2 2 2- (_x_X_ %_&+)(_x,Xi,._ w_+Si,. ÷) +
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where Sk-r =-- Skr - 1/w;_ and S_._ - Sk_ (see [C.13]) are used for simplification, and

AL*_ -- rd(x) - L_Is) [17.241

(see [5.30]). The phase delay equivalent of [17.23a] is derived from the phase expressions

in [17.20] and [17.21] but is not shown here because cycle ambiguities, the Ns and Nx

in [17.22], are not known a priori. Typically, the dominant dispersive terms in the phase

expressions are eliminated directly to resolve cycle ambiguities, making phase delay S/X

corrections unnecessary. The other linear combination of delays and rates, [17.7] and

[17.11], can be used to obtain the following:

22 [-- OOSr ) WSrO2X*"

+ _(sk, - xk,) - i*(si. , - x_._) + (s°, - x,,)]

ks/x °ds+OJx_- _-_ (_ - _*)(sk, - xk+) + ],(sk, - xk,)
O2x_ -- O2s+

- k Csk.+- xk._) - (s,_ - x,_)

[17.25a]

[17.25b]

In the absence of media and processing effects, the right side of equations [17.23] should

be zero. Minimizing the largest term in each equation leads to definitions of the reference

frequencies. The dominant term in [17.23a] is the one proportional to (k - k*). This term

can be eliminated by choosing

,L = 1/sk, _, = 1/xk,. [17.26]

Similarly, the k term is the dominant dispersive term in [17.23b] and can be eliminated by

choosing

2 2
Ws_ : llSi_" Wx_ : llXic_-" [17.27]
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Finally, the dominant term in the phase delay equivalent of [17.23a] (not shown) is pro-

portional to (k - k*) and can be eliminated by setting

 s:2 = 1/sk , = [17.28]

These expressions can be written in their more expanded form using [C.13]

[17.291
W2sr = Sd S -- toSd6

s00 [17.30l2

O2s{, -- Sd 3 -- toSd6

2 = wosSdo [17.31]
03STP Sd 4 -- wosSd5 + towosSd6'

with similar expressions for X-band. With these definitions and those of [C.14], equations

[17.23] and [17.25] become

$ * T$

rs/x = _"+ ({t _ {t.) _ r¢,_s) _ CxrArd +[¢Rk r _ k Rk. r + Rat

i's/x = i- + _t (k - [c*)Rk_ + k Rk. _ + Rat

T*

ks/x = k, + CskA%_* -- k-*Qk.k + _¢Rick - k Ri: k + Rak

T*

kslx = _: + (k - fc*)Rai _ - k Rk.i, - Rai c

[17.32a]

[17.32b]

[17.32c1

[17.32d]

These expressions are exact, given their model assumptions. The first two quantities (the

S/X corrected delay and phase delay rate) are passed to Modest for further analysis.

The first term on the right side of equations [17.32] shows the uncorrupted observable

and the terms that follow are consider error terms which can introduce systematic effects

in the S/X-corrected quantities. The second term on the right of [17.32a] and [17.32b]

shows the effects from the average tropospheric delay and rate, and appears to be the

dominant error term in these expressions at present. An external calibration (for example,

Water Vapor Radiometer (WVR) data) is needed to eliminate these systematic effects.
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The last three terms in equations [17.32] can be regarded as data drop-out effects; these

terms would be zero if a_ were constant in time, for each bin (a¢+ i = a_+). Fit evaluates the

first two drop-out terms shown (16-byte precision is necessary in this calculation). Because

they are usually negligibly small, Fit does not use them to correct the S/X observables at

present. The kRkr and k Rk. r terms in [17.32a I are usually on the order of 10 -14 seconds,

though kRk_ may contribute on the order of a picosecond. The (k-fc*)Rk_. term in [17.325]

is typically on the order of 10 -17, but can be of order 10-16; the ]¢ Rk, _ term is about

three orders of magnitude smaller. The kRkk and -*k QkOk terms in [17.32c] contribute

on the order of 108 cyc2/sec, which typically represents about a 0.1% correction to ks/×;
--¢$

k R/c. k is about three orders of magnitude smaller. The (k - k*)Rkk term in [17.32d] is
--¢$

on the order of 102 cyc2/sec 2, which is about a 0.01% correction to _ks/×; the k Rk. k term

is about an order of magnitude smaller. The last drop-out term in each expression is not

evaluated by Fit. These terms represent a number of negligible effects, the largest of which

is probably the one proportional to :_yk (see last group of equations in [C.13]). Fit does

not attempt the calculation of :_vk from the k_ time series, which is calculated from the

time series of residual S and X-band delays (Fit calculates for plotting purposes), because

it is dominated by system noise.

The remaining error terms in [17.32a], not discussed immediately above, are due to

differences in the S and X-band clocks. This effect, also discussed in section 5, is written

as two terms: a constant clock-like term, rc*_<s_, which is usually absorbed at the Modest

stage of analysis by a clock parameter, and a term proportional to the S and X-band clock

difference, CxrAr*,, where Cxr is given by [17.6] and Ar*_ is given by [17.24] and [5.30]

and assumed to be constant during the experiment. Changes from scan to scan in C'xr

imply a changing delay term which cannot be absorbed by a Modest clock parameter.

The size of this effect has not been studied thoroughly at this time but may border on

being significant. Presumably, Ar_ could be estimated in Modest since it is assumed to

be constant and C×r is known for each scan.
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The formal errors of the four quantities in [17.32]are given by

2 2 2 2 2
ars/x : CsrGr, + Cxrar =

_2. 2 2 2 2
rslx = Cs_o_, + Cx_a_=

a2 2 2 2 2
ks/x = Cskaro + Cxkar _

a_ = C 2.a? + 2 2
kSl x sk ro Cxica_=,

[17.33a]

[17.33b]

[17.33c]

[17.33d]

where at, and ae, are given by [14.10b] and [14.10c], and similar expressions hold for the

X-band quantities. The formal errors for the delay and phase delay rate, [17.33a] and

[17.33b], are also passed to Modest for further analysis.
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Section 18

Phase Connection

This section summarizes the expressions needed for phase connection. Phase connec-

tion is the process by which the estimated phase, given by [14.16a], [10.2] and [12.4], is

used to form a phase delay observable. Since only the fractional number of cycles of the

total phase is measured, the integer part must be determined from other information such

as the BWS delay and/or model delays. Fit does not attempt phase connection at present

but passes the necessary information to the Modest binary file where software independent

of Fit can be used to study cycle ambiguity resolution.

The residual phase, CD, given by [14.16a], and the a priori residual phase, ¢_), given

by [10.2] and [12.4], are determined only to a fraction of a cycle; the true residual phase

is given by 2_rN + ¢_) + ¢_), where N is an integer. This true residual phase, divided by

the reference band frequency w0, gives the residual phase delay. If the correlator model

contains no dispersive effects, it can be applied to the residual phase delay in the same

manner as the group delay (see [16.9]). The total phase delay for S-band observations, rsp,

can be written

7"9= T_'" -t- ¢_s -t- ¢_s -t- 27rNs [18.1]
¢dOS

2rNsP
-- r_it(s) + --

WOs

where ¢_s and CDs are in the Modest sign convention, r_ 'r is the correlator model delay

given by [16.10], Ns is an unknown integer, and

p T7r + [lS.2]
TFit(S} _ -Jf-

¢d0S

is the quantity Fit passes to Modest as the S-band phase delay (S-band is assumed here

and throughout this section, but similar equations hold for X-band).

18-1



The S-band phase delay, considering dispersive, tropospheric and manual phase cali-

bration effects as presented in the last subsection of section 17, is given by (see [17.20])

1.sp= _sP _ ¢o*s + (_t _ _,,) _ Awo.______s1., - kSkr, + k'Sic*r, [18.3]
WOs WOs otis)

Here, _Ps = ¢os/Wos is the phase delay without propagation or processing effects, ¢0s is

given by [17.22] and Awos = Wos --W_s (see [5.32]). The last three terms of [18.3] are
-- T*

usually negligible and will be dropped (]¢Skr" and k Sk.rp contribute on the order of 10 -s

cycles divided by the band reference frequency). The second, fourth and sixth terms of

this equation depend directly on Wos. If all scans are processed with the same wos, the

second term will represent a constant, clock-like effect, the fourth term will vanish and the

sixth term will simplify. Equating [18.3] to [18.1], assuming a constant Wos for all scans,

_0s, and expanding SkrP and Sk*rp gives

21rNs p* _ _t,) (f¢. - k.*)r_i,(s) + - _sP - r,;, + (_t [18.4]
¢J0s CO2 '

s rP

where

,;p. _=¢;s
_0s' [1881

and COs_.p2is given by [17.28] and [17.31].

Equation [18.4] can be rearranged to give

"_,,_s_+ (t - k*) 2_-Ns p, _ _,)2 + - _t - ,;, + (_' [18.o]
COs rP _0s

where ,n
rkiod is the Modest delay estimate which includes clock and tropospheric modeling.

This can be rewritten as

rPF,t(S}+ (_: -- k*) rMmod + 27rNs _ 27rFs, , [18._1
COS rP (_0S (_0S
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where Fs is introduced to make a strict equality. If k and k* are approximated by fCs/x

-* (given by [17.32c]), thenand ks� x

p (fcs/× .,- k';/x) 2rNs 2rFs
T_,it(S ) -t- 2 -- TM°d -_- -- _ --' [18.8]

¢Zs rP ff)Os ffJOs

All quantities, except Ns, on the left side of this equation are known, so Ns can be chosen

to minimize the right side. This defines Fs to be a number of cycles between -1/2 and

+1/2. With Ns determined, the right side of [18.6] gives the S-band phase delay. The

formal error in Is, which can be easily derived from [18.8], [14.10a] and [17.33c], is

"i - + ..7- + _ ),
-- 4_r----_ ks/x aks/x

WSrP

[18.9]

if aFs has units of cycles, and a¢0 has units of radians. A standard check that the assigned

Ns is meaningful is to plot Fs for many scans; each Fs should be near zero (because the

Modest clock parameter should remove any constant bias) and their errors should be a

small fraction of a cycle.

18-3





Section 19

Modest Interface

This section summarizes those quantities passed from Fit to Modest; Table 19.1 sum-

marizes all such data. As stated at the beginning of this report, the goal of this analysis

is to derive the charged particle calibrated delay, phase delay rate and phase delay. Fit

passes three delays and phase delay rates (and their formal errors) to Modest: those for S

and X band given by [16.9] and the final S/X corrected values given by [17.4] and [17.6]

for the delay and [17.10] and [17.12] for the phase delay rate. The phase delay for S and

X band, given by [18.2], is passed but the S/X calibrated phase delay is not because phase

connection, which Fit does not attempt, is needed first. The amplitude and its formal

error, given by [14.17], are also passed for both bands. The reference time given by [3.1]

is added to the scan start time to give the absolute scan reference time. This time, along

with the reference frequencies given by [3.2], [17.29], [17.30] and [17.31] for both bands, is

also passed. Finally, the source name, station names, scan length and scan duration are

passed to Modest.
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Quantity Reference Fortran Storage

SourceName

Station Names

ReferenceDate

ReferenceTime

Observation Number

ReferenceFrequencies

ScanLength

Amplitude

Amplitude Error

Group Delay

PhaseDelay Rate

Phase Delay

Group Delay Error

Phase Delay Rate Error

PhaseDelay Error

[3.if+Scan Start

[3.2] [17.29-31]

[14.17] [2.16c]

[16.9][17.4]

[16.9][17.10]

[18.2]

[14.10b]

[14.10c]

[14.10a]

C,12

2(c,8)

1,4

R,8

1,2

8(R, 8)

R,4

2(R, 4)

2(R , 4)

3(R• 8)

3(R, 8)

3(R * 8)

3(R* 4)

3(R * 4)

3(R* 4)

Table 19.1 Size and order of data passed from Fit to Modest. The reference

column lists the relevant equations from the text when applicable.

An additional I * 2 record descriptor is written to Modest before
these data.
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Appendix A

Phase and Amplitude

Probability Distributions

The phase and amplitude probability distributions for a complex phasor, along with

their means and variances, are derived from the Gaussian distributions of the x and y

phasor components. The phase distribution is derived first by defining the following trans-

formation and its inverse:

(x,y) --* (w,wtan¢),

(¢, w) -_ (arctan2(y,x),x),

[A.1]

where ¢ is the angle to a given x-y point, w is a dummy variable which will be eliminated

by integration, and the function arctan2(y, x) is defined by

{ tan-lx_ x > 0
arctan2(y,x)- tan-lx_ +sign(y)-r x < 0 [A.2]

sign(y). _ x = 0.

Figure A.1 illustrates the transformation. From this figure, w > 0 implies 1¢1 < _ and

w < 0 implies I¢1 > _; the other, blank regions correspond to the transformation ¢ =

arctan2(y, x) + r.

The ¢ probability distribution is obtained by integrating H(¢, w), the two-dimensional

probability distribution, over w. The infinitesimals in the two coordinate systems can be

equated:

H(¢,w) dCdw = f(x) g(y) dxdy, [A.3]

where f and g are the Gaussian x and y distributions. The ¢ probability distribution,

P(¢), can now be written as

p(¢) = H(¢,w) dw [.4.4]
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Y

X W

Fig. A.1 The two-dimensional transformation between the x-y plane and

the w-¢ plane for the function given by [A.1]. The horizon-

tal lines with arrows show the transformation. The regions in

the w-¢ plane free of such lines have no corresponding point

in the x-y plane; these areas correspond to the function ¢ =

atan2(y, x) + 7r.

:{

fo H(¢, w) dw

fo H(¢,w)dw

I¢1<

]¢t>

7r]¢1<

I¢1>

where IJI is the Jacobian of the transformation ([A.1]):

J -- det _ _w

-= x sec2¢.

[A.5a]

[A.5b]
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Substituting [A.5b] and eliminating the absolute value signs in [A.4] leads to

sec2¢fo f(w)g(wtan¢)wdw I¢1<P(¢) = sec2¢fo fC-w) gC-w tan¢) wd_ I¢1> _-
[A.6]

Using the Gaussian distributions for x and y, with means $: and Y, and variances a-2 and

av2 ,

-(_- _)_ -(y- _)_
1 2a2 1 2a 2 [A.7]

leads to

f0 °
sec2¢ exp - [ (+w- -- Z)2 (+wtan ¢ -- ._)2

P (¢) -- 2_raza--_y L 2az2 + 2-a_ ]wdw

e-C j_o 0°
= e -aw2 + bWwdw,

2razay cos2¢

[A.8]

where

1 1 tan2¢_ 1 (cos2¢ sin2¢_

9tan¢ 1 (Zoos ¢ 9sin¢_b=z_+ - --

[A.9]

The upper sign in [A.8] corresponds to I¢1< _ and the lower sign to I¢1> _; this will be the

case for all such equations below. Making a change of variables from w to r = V_(W =t=b)

leads to

ekl2--e f? e -r2 (r 4- k') dr, [A.IO]P(¢) = 2_razay acos2¢ k'

where

b
k t =_-

2v/- d [A.11]
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sign(cos¢) x a_ + -sin

V G x Gy

Define k - k'sign(cos ¢) = ±k' (using the sign convention noted above) so that

ek2-c i; e -'2 (r - k) dr
P(¢) = 21razayaC°s2¢ k

(for all ¢). [A.121

Evaluating the integral and substituting in the expressions for a and c gives the final

probability distribution for ¢ as

azaye [1 + v/-_ke k2 (1 + erf k)] [A.13]
P(¢) = 21r(a 2 sin2¢ + a_ cos2¢)

-sin

1 x a_

+
V G z Gy

Equation [A.13] was derived for general x and y Gaussian distributions, but as indi-

cated by equation [2.9], the variances of the x and y components are approximately equal.

Equation [A.13] can be simplified using ax = ay = a to give

1 -R2

P(¢) = --e 2a 2 [1 + x/_ k e k2 (1 + err k)] [A.14]
2r

k __

R
cos(¢ - $),

G

where R and ¢ are defined by z -- R cos ¢ and _ _ R sin ¢. This should be compared to

equation [2.15a].
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The mean of ¢ is seen to be unbiased by evaluating

= f¢+_

=/_"
7r

¢ P(¢) de [A.15]

(a + ¢) P(a + ]p) da

_ P(_ + _) e_ + _ P(_ + _) e_
Ir

where a - ¢ - ¢ and the last two integrals are zero and one respectively, because the first

is odd with even integration limits and the second is the distribution normalization. The

phase variance is given by

FVar(¢) = (¢_(¢))2 P(¢) de
7r

= f_-¢ ¢2 p(¢ + _) de
3- _r-_

= ¢2p(¢ + _) de
7r

71"2 -R2 1 R f_
: --e 20"2 -_- ---- /o3 v_a

-R 2 shl2 _b

¢2
/

cos ¢ e 2a 2 (1 + erf --
\

[A.16]

Equations [A.15] and [A.16] are equivalent to [2.15b] and t2.15c].

The Amplitude Probability Distribution

The amplitude probability distribution can be obtained with the transformation

(x,y) -_ (w,x/A2- w2)

(A,w) ---,(V_ -+-y2,x),

[A.17]
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Y A

. \

",.. X \\\\ iii "1

D

W

Fig. A.2 The two-dimensional transformation between the x-y plane and

the w-A plane for the function given by [A.17]. The horizontal

lines with arrows show the transformation. The dashed lines in

the w-A plane show A = ±w.

where A is the amplitude. Figure A.2 illustrates this transformation. Because both signs

of y transform to the same A-w point, this transformation is not one-to-one; this is han-

dled explicitly by a separate integration for each sign of y. The amplitude probability

distribution can now be written

P(A) =/_:_
(X)

=/5
H(A,w) dw [A.18]

f(x) g(Y)IJl dw + ff
O0

fCx) gC--y) IJI dw,

where J, given by [A.5a] with ¢ replaced with A, is AIv/A 2 - w 2. Substituting this into

[A.18] and simplifying gives

p(A) _ A -(R2+A2) f_A [ ('X,27to 2 e 2a 2 exp
A

W -t- ,0 V/A2 -- W2\

0 2 ) +

dzo

VIA 2 _ w2 '

[A.19]

where R is defined above.
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Using _: - R cos ¢ and .0 - R sin ¢ as above, and changing variables from w to E with

w --- A cos E, leads to

2fret2 e 2a2 e + e o 2 dE [A.20]

27r02 e 2o2 e + e7 c°Sa d_x

A -(R2+ A2) f. RA

-- --e 2cr2 ]0 e a---2-- cos c_IrG 2
doL_

where a - E - ¢. Using the integral representation of the Modified Bessel function[ l°]

1
f_r e+zc°s_ dE, [A.21]I0( ) = .10

leads to the final expression for the amplitude probability distribution (see equation [2.16a])

P(A) = --a2e 2_2 Io _ )7" [A.22]

The amplitude mean and variance can be derived in the same manner as the phase

mean and variance. The amplitude mean is given by

/;(A) = AP(A) dA [A.231
oo

1= Or"-'2e 2a 2 A 2 e 2,r2 I0 dA.

The solution to this integral is given in reference 11, giving equation [2.16b]. The amplitude

variance is calculated using

£Var(A) = (A - (A)) 2 P(A) dA
oo

= f__o A 2 P(A) dA- {A) 2

= (A 2) - (A> 2,

[A.24]
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where (A2) is also given in reference 11 as

(A 2) = R 2 + 2a 2. [A.25]

Substituting this and [A.23] into [A.24] leads to the final expression for the amplitude

variance, given by [2.16c].
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Appendix B

Effects of Time and Frequency FFTs

on Data Phasors and A Priori Estimates

This section presents a detailed accounting of the data phasors through the time FFT,

the rescaling operation and the frequency FFT. The goal is to derive an expression for the

final, transformed phasors in terms of the original data phasors given by equation [10.1].

The standard EFT transforms a matrix _(i) into the matrix b'(k), each having m

phasors. These matrices are related by

m

G(k) e= m i,k = 1,2,-..,m. [B.1]
i=1

By padding the input FFT array with additional zero-amplitude phasors, the output array

will have more entries, corresponding to a finer discrete sampling of the transform function.

If m data phasors are padded with zero-amplitude phasors resulting in a total of n phasors,

the equation relating the data and transformed arrays is

m (/-1)(k-I) f i : 1, 2,..., m
b'(k) = _ _(i)e 2"i n _, [B.2]

i=1 k = 1, 2, • • •, n.

From this equation, it can be seen that no approximation or inaccuracy results from

padding the FFT arrays; the padding simply increases the sampling density of the trans-

formed phasors.

The first FFT performed by Fit is over the phasor time series of each bin. If Pkt is

the data phasor for the kth time point and lth bin, then the transformed array, F(i,l), is

given by

nr

F(i,l) : _--_ _kt exp 27ri (k -- 1)(i- 1), lB.3]
k=l l'/'t

where nr is the number of data time points, and nt is the total number of phasors in the

FFT after padding, and is selected to be the lowest power of two that at least doubles rtr.
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The time FFT is shown schematically in Figure B.la. The lower numbers in the

figure indicate the elements of the FFT output array, and the upper numbers represent

the fringe frequency corresponding to the given array element. The first array element

corresponds to zero fringe frequency. The second element corresponds to fringe frequency

A -- 1 (cycle)/nt tc Hz, where tc is the number of seconds between points in the time

series, usually two seconds with the Block II correlator. Each successive array element

corresponds to a fringe frequency A higher than the previous element. The sampling rate

of 1 (cycle)/tc Hz limits the fringe frequency to +1 (cycle)/2tc; actual fringe frequencies

outside this range will appear in it through aliasing (r in the figure corresponds to this

highest frequency; r - 1 (cycle)/2tc). Thus, array elements in the second half of the array

should be interpreted as negative fringe frequencies, increasing from the largest negative

fringe frequency -r Hz to --A Hz.

Because the fringe frequency in Figure B.la is discontinuous at the midpoint, Fit swaps

the array halves, as shown in Figure B.lb. Equation [B.3] must be modified to reflect this

change in array ordering. Replacing i with i - nt/2, the swapped array of transformed

phasors, Fl(i, l), can be written in terms of the original phasors as

nr

P(i,l) = Z p'kl exp 2_ri (k - 1)(i - nt/2 - 1) [S.4]
nt

k=l

Fit next interpolates and rescales the transformed phasors. The resulting density is

half that found in a hypothetical bin having frequency w0. For the purpose at hand, this

can be broken into two stages: the interpolation, followed by the rescaling. If P_(i,l) is a

matrix element after interpolation, then

F"(i,l) = 1_'(2i,/)

nf

= Z_klexp2ri(k -- 1)(2i-nt/2- 1)
k=l nt

[B.SI

This operation is shown schematically in Figure B.lc, where A r = 2A. The rescaling

results in the nominal fringe rate being multiplied by wt/wo. If _m is the matrix after
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a b ir_t r ._01_ I I
1 2 _t

2

l'l t

b

d

-r -r+A

I
1 2

-A 0 A

nt
2

1 2 n t
4

0 _ l,_lt t_, I

1 2 n_f
2

r-A

?--
n t

r_ A'

F-

2

-6

?--
nf

e

-t -t+6 -6 0 6 t-_I r--
1 2 nf nf

2

Fig. B.I Schematic representations of the FFT arrays at various stages

of the analysis. The lower numbers are the FFT array elements

and the upper numbers are the corresponding fringe frequency

(a-c) or BWS delay (d-e).
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rescaling then

nr I)(2i nt/2 l) wl
F'"(i,l) = Z_kt exp27ri (k- - - . lB.6]

rtt COO
k=l

Figure B.lc stillapplies after rescalingifr and A are assumed to be scaled by wt/wo.

Fit next performs the frequency FFT. This FFT not only has zero-amplitude phasors

padding the end of the array, but also has them between channels when BWS is used to

increase the bandwidth. If G(i,j) is a phasor after performing the frequency FFT, then

nb

G(i,j) = Z F"(i'l) exp2ri(T(l) - 1)(j- 1)
l=l rtf

[8.71

rtb rt r

= Z ZP'k/exp2rri[ (k- 1)(2i--nt/2--_ 1)__c°l + (T(l)- l)(j- 1)] ,
/=1 k=l nt COO nf

where rtb is the number of bins, and n I is the lowest power of two that at least doubles the

number of possible bins across the observing band. The T(l) array maps the sequential bin

number to a hypothetical bin number assuming the observing band is packed as densely

as possible:

T(l)- cot -Wl -1- 1, [B.8]
co b

where cob is the width of a single bin and col is the frequency of the first bin. Figure B.ld

shows the frequency FFT in a similar manner to Figure B.la. Here, 6 -- 1 (cycle)/nfcob

seconds is the phasor spacing in delay, and it is the range of BWS delays, where t -

1 (cycle)/2cob seconds. The final operation Fit performs is to swap the array halves in the

frequency direction to eliminate the discontinuity at the array center. This is the same

as replacing j with j - hi�2 in [B.7]. Substituting [B.8] leads to the final form of the

transformed phasor, Tij,

nb rtr

Tij = Z Zpklexp2ri[ (k- 1)(2i-nt/2-1)co I + (col-col)(j-nl/2-1)]
1=1 k=l nt coo cobnf '

[8.91

which is also shown schematically in Figure B.le (compare to [10.1]).
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Calculation of A Priori Estimates

The maximum amplitude phasor among those obtained from the FFTs corresponds

to a discrete i-j point near the true maximum phasor. An iterative search in i-j space

is performed near this maximum FFT phasor to obtain the i-j point giving the true

maximum amplitude; call this point (xi, xi) and call the phase of the transformed phasor

at this point Cmax -- arg T(xi,xi). At the maximum amplitude point, the data phasors

have the same phase to the best approximation of any point in the delay-rate space. If

®ijkl is the phase of the exponent in [B.9] and _kl is the phase of the data phasor, Pkl,

then on average

Ckl "3t" OZiX,'Jg_ = CmtLx. lB.10]

Rewrite _)zizykl as

2_r(k - 1)(2zi -- nt/2 - 1) wt 2_r(w/ - Wl)(Zj -- nf/2 -- 1)
= --+ [B.11]

nt wo wbn f

Wl
s_ [1,.- _r,,_--- . 1)--ei + 21r(w t -- wll£'j

_0 00b

2_r 2_¢

= -_c (tk -- tllWtXiwo _- _bb(wl -- w1)ej,

where

2zi - nt/2 - 1 x i - hi�2 - 1
£'i -= ¢j - , [B.12]

nt nf

and (k - 1) -- (t_ - tl)/tc are used. To obtain the a priori estimates, replace the data

phases, Ckl, with the model phase given by [6.2]. Substituting [B.11] and [6.2] into [B.10]

leads to

2_r 2_r

--WlT'i(tk -- tl) -Jr" --ej'(Wl -- W1)
Cmax = T02l -- TWO + TWltk -- _-Wlto + ¢0 + tc WO Wb

= (_ + 27r £i)wttk + (r - _to -
¢oote

2_ 2_r 2_r

u_ b

[B.13]
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where all k and I dependence has been placed outside the parentheses. For this equation

to hold for all k and l, the quantities inside the first two sets of parentheses must be zero.

Thus, the following equations must hold

27r

o =/- + --ei [B.14I
wore

27r 2_r

0 = r -- _to -- wot----_ct_£i+ --CObxj-

2_r

_m_ = ¢o - TCOO - --COl _j °
COb

Solving these equations for r, _ and ¢0 gives

2_r 27r
," -- (to --tl)_i- --_; [B.151

wore cob

27r

= ÷(to - t_) - --_,j
COb

27f

#- _.i
COotc

27r 2_"

(to -- tl )ei -- --_b(COo-- COl)2j

= ¢,,,= + ,(COo-COl) + _CO_(to - t_),

which are also equations [10.2], as desired.
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Appendix C

Time and Frequency Summations

and Expressions

This section defines time and frequency summations, and combinations of these, which

are used extensively in the least-squares analysis found in section 14 and the charged par-

ticle and tropospheric consider analysis given in section 17. Some simplifying expressions

are also included here which are useful in deriving some of the equations in those sections.

For the sums that follow, i runs over all bins in the band with bin frequencies wi, j runs

over all time points, tj, a_j is given by [2.15c], and ¢0 is the phase of the data phasors.

S-band expressions are given here; X1 would be the X-band counterpart to $1, for example.

(s) (s)
1 1

s_-
i aiJ

(s)

• _i _°i
S3x =- 2

• aiy

• (s) _

• aiy

(s)
• 1

=-?2 = 4
(s)

Sz = _-_ S_

S_ - _ S_

$3 =- _ tyS_

S, - _ tjSio

Ss =- _ tySix

ca i

= _--y
i1 aiY

(s) ty

(s)

=Z ty2
i1 aiY

_ wity=
if aiy

• if a2j

[c.q
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s,=_F, qSJo
J

i

J

2
tj

= m

if a2f

= ___
ij aiJ

(s) 2 2
_-. ca i t j

A_, 2

ij aiJ

The following expressions contain the interferometer phase:

(_) ¢o
• j

• (s) .'i¢i_

s_= _ _ s_- _, s_
• aij j

(s) ¢_j
=_

ij aij

(s)
= _ wi¢ij

ij 02

(s)
witj____Cij

j ij a?j

[c.2]

The following combinations are defined in terms of the summations given by [C.1]:

,9o2 = SoS2 - S_

Soo- SoS8- S,S5

S,6 - SISo - $2 $5

So9- SoS9-s_

S,9- SiS9- SsSs

$29 - $2S9 - S#.

[c.s]
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More complicated combinations are given by

SdO -- +Det

So $1 Ss

s_ $2s6

ss s6s9

= sss,6 - $6So6+ $9So2 [c.4}

Sdl =--+Det

Sd2 _ -Det

Sd3 _ +Det

s3s4s7

$i $2 $6

ss $6s9

So sl ss

s_ $4 s7

ss s6 s9

So $I Ss

$I $2 $6

$3S4S7

: 83329 -- S4S19 -]- $7S16

= $3S,9- S4So9 + S7So6

= $3S16 - $4So6 + $7So2

Sd4 -- +Det

Sd5 -- -Det

Sd6 =-- +Det

Sm So s4

Si $2 $6

Ss S6 S9

So $I Ss

S._ So S4

Ss S6 S9

SoS, Ss

S, S2S6

S_ So S4

= S._$29 - SoS19 + $4S16

= S_S,9 - SoSo9 + S4So6

= S._S,6- SoSo6 + S4So_.

When each of the quantities above is normalized to the same units by using the appropriate

factors of w0 and to, it is found that

2 SdO Sd I Sd2 Sd4

_02 _ --to_o_ --to _ 2Sd3 _- --_0 _ 2S_s [C.5]

and Sd6, in these normalized units, is five to six orders of magnitude smaller than the

above variables. With these definitions, all the above quantities are positive except Sd6,

which can have either sign.
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The following vectors can be defined

Svl - (So, S1, Ss)

$v2 - (S,, S2, $6)

_v3 - (Ss , S6, Sg)

$v4 - (S3,S4, S7)

_v_- (s..,So,S,)

SSl ---- ($29,--S19, S16)

Ess - (-s,9, Sog,-So6)

Es3- (si6,-So6, Sos)

_ - (s°,sb,s,).

[c.6]

[c.7]

[c.s]

With these definitions, the following hold:

Ss_._Vl= S0o

_,-_v_ = o

_,._ =o

_Sl. _v,= so,

SS2 " SV1 =0

_2 ._v== Sdo

_,2._3 = o

_s_._, = -sos

Ss3 " Sv1 =0

_,_._v== o

_s_._,, = so_

_3. _ = so_.

[c.9]

Definitions containing to are:

Stl =-

St2 =-

St3 -

Sto -

So_ - to Sos

So9- to So6

S19 - to S16

St2 - to St1

So9 - 2 t,, .%6 + to2 So2.

[c.lo]
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The following identities are useful for simplifying expressions:

S02S09 - $26 = So Sdo

302S19 - 306316 = SiSdo

S02S29 - S26 = S2Sdo

S06S19 - S09 S16 = Ss Sdo

S06S29 - S16S19 = S6Sdo

S09S29 - S129 = S9Sdo.

[c.,ll

The following are defined for the consider analysis in section 17 (see [5.27] for the t*

definitions):

_i] * tli titli' --2 ' a_]

i_j * t2i tjt2i

wita' w_t_i ¢a_tjt_i'_
ai] ij ij

_i] witsi wi t5i
--, _--5-, _-:Y

Sts - a_j ii aij ii aiJ

"it,i w_t_i w_t3"t;i

ai] ij i1 aii

, _--_, a-_.2j

z CS)_ir_" (s) 2 t, CS) ,,2. t,)

[c.12]
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Several simplifying expressions are defined as:

sk_ - (sd4 - _oSd5+ _otoS,6)/ Sdo

sk. - (sd5 -to&o)/&o

Sk_ = S_6/Sdo

Sk_. =- Sk¢/wo

[c.13]

sk-_ - sk_ + _o/_; =,

s_., -s_,- 1/,; =,

Sk,+ -- Sk+

sk_ - [(s,1 - .oSd= + _otoSd,) - to(Sd. - _oS, s + _otoSd6)]/Sdo

sk. - [(sd2- toSd3)- to(Sos- toSd6)]/Sdo

Si._ -- (Sd_- tOSdB)/S_o

Si... -- Si_/_ o

s_,._- _, . (_s, + ,o_s= + -oto_s_)/Sdo

sk., = -_,, . (_s_.+ to'J_)]/S,,o

s_., - (_, . _s3)/ S_,o

Si,.,p =- Si,._/_o
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The following are simplifying ratios:

( XkrSic r - SkrXkr'_

Rk" T \ Xkr Skr

R,_r__ ( XkrSar --Skr Xar _

Rk+ --(xi_s_+- Sk+Xk+_

Ri_, - ( Xk+Sk.++ xk, _ /

Ro_ (x,+so_ %_xo+)
Xk{. Sk+

R;_. rp =

Rarp =_

Xk¢Sk¢ - SkcXk¢ )
Xk¢ Sk¢

Xk¢Sk. - SkcXk. ¢,]x_ - Yfj ]

Xk¢Sa¢ - SkcXa¢ )
Xk¢ Sk¢

Rick \ Xkr Skr ]

Rk'_- Xkr Sk_ ]

Rak -- Xkr --S;cr

( Xk+ - Sk+ )Rk£ --
Xk+ Sk+

Ri_'i¢ -- \ X_+- Sk_

( Xa+ - Sa+ )Rak = Xk+ Sk+

=_ { Xk¢ - Sk_ , "_
RickP \ Xk¢ Sk_ ]

( Xk._ - S_._R£.kp
x_ -_ ]

Xk_ - S_,

[c,4]

Qk*k--1-- W_xr Ws_r "_!
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Appendix D

Variable Definitions

The variables used in this report, except for those found in the appendices, are given

below along with their definitions. The equation number next to each variable gives the

definition or first occurrence of the given variable; a - or + preceding the equation number

indicates the variable is defined just before or after the indicated equation, respectively.

Variables are ordered alphabetically by the primary symbol, with Roman characters first,

followed by Greek symbols.

a, -[10.4]

A -[2.15]

A_ [15.6]

A,j +[14.17]

A}j [14.17]

(A) [2.16b]

At, [2.19]

.4 [14.4]

Ab [6.1]

-_b [15.2]

A_' [7.3]

A m [10.4]

A t [7.1]

A_ [7.2]

.41 [15.9]

.4R [15.9]

Coefficient i ({ between 1 and 5) for 2-D parabolic fit

Generic phasor amplitude

Phasor amplitude of time-bin point i

Phasor amplitude of bin i at time point j

Bandpass corrected phasor amplitude of bin i at time point j

Mean phasor amplitude

Station i's tone phasor amplitude

Design matrix for least-squares analysis

Band amplitude

Trial band amplitude

Model FFT phasor amplitude

FFT phasor amplitude

Test amplitude

Test amplitude for phase rate k

Imaginary part of design matrix .4

Real part of design matrix .4
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b

B

Bi

B_

By

c

O

Oi

Cs,

Cxr

Cs_

Cx_

_$ yp

_XTP

Csk

Cxk

c_k

Cxk

[2.1]

[2.S]

-[2.121

+[14.171

[2.51

[2.51

-[2.121

-[2.12]

[12.2]

[16,11

[2.13]

[12.1]

[4.1}

[17.41

[17.41

[17.101

[1;.10]

[17.14]

[17.14]

[17.71

[17.7]

[17.11]

[1"/.111

Bin index

Average blanking counts: B - (B. + By)�2

Average Block II blanking counts: _ - (b. + [_v)/2

Bandpass amplitude correction for channel bin i

Real (cosine) blanking counts

Imaginary (sine) blanking counts

Real (cosine) Block II blanking counts

Imaginary (sine) Block II blanking counts

Average integrated Block II blanking counts

Speed of light = 2.9979 x 108 m/sec

Like-sign cosine (real) Block II counts in bin mode

Integrated like-sign cosine (real) Block II counts in bin mode

Like-sign tone cosine (real) Block II counts for station i

S-band delay weight for dual frequency calibration

X-band delay weight for dual frequency calibration

S-band phase delay rate weight for dual frequency calibration

X-band phase delay rate weight for dual frequency calibration

S-band phase delay weight for dual frequency calibration

X-band phase delay weight for dual frequency calibration

S-band Total Electron Content (TEC) weight

X-band TEC weight

S-band TEC rate weight

X-band TEC rate weight
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Cs kp

Cxk_

D_

Di

Ei

7

7R

Fs

F_

G_

h

i

I

i

5

Io

I1

J

[17.15]

[17.15]

[5.4]

[5.7]

[5.4]

[5.7]

[14.3]

[15.9]

[15.91

[1s.7]

[5.24]

[5.24]

[s.2]

[2.11]

-[2.12]

[12.1]

[2.18]

[2.16[

[2.16]

[5.2o]

[5.21]

S-band TEC weight (from phase delay)

X-band TEC weight (from phase delay)

Weighted phase average for bin i

Weighted phase average for bin i after model subtraction

Time weighted phase average for bin i

Time weighted phase average for bin i after model subtraction

Matrix of observations for least-squares analysis

Real part of observation matrix 3r

Imaginary part of observation matrix 3r

Fractional number of cycles to connect phase

Special summation involving residual TEC

Special summation involving residual TEC

Ratio used for phasor interpolation

Index, often used to index bin numbers

Invalid counts

Block II invalid counts

Block II integrated invalid counts

Block II tone invalid counts for station i

Modified Bessel function of order zero

Modified Bessel function of order one

Index, often used to index time points

Proportional to baseline TEC at time tj

Average kj: proportional to scan TEC
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k [5.211

_; [s.21]

k" [5.26]
"T*

k [5.26]

k(t) [17.1]

k(t) [172el

k, -[17.11

k,slx [17.7]

_¢s/x [17.11]

/¢ [16.1]

l [2.1]

L, [2.5]

Ly [2.5]

L, [2.12]

Ly [2.12]

M 4-{2.12]

Mi [5.24]

Mr, 4-[4.1]

IQ, [15.1]

Z_

Mi [15.3]

,',b [lO.1]

n$ [10.1]

n, [i0.i]

Averaged kj rate: proportional to scan TEC rate

Residual of k i after subtracting linear model

Average k i for the MPC scan

Averaged k i rate for the MPC scan

Proportional to baseline TEC at time t

Proportional to baseline TEC rate at time t

Proportional to station Total Electron Content (TEC)

Estimate of k using S and X-band BWS delays

Estimate of f¢ using S and X-band phase delay rates

Unit vector in direction of wave propagation

Lag index

Real (cosine) like-sign counts

Imaginary (sine) like-sign counts

Real (cosine) Block II like-sign counts

Imaginary (sine) Block II like-sign counts

Block II normalization factor

Special summation involving residual tropospheric delay

Block II tone normalization factor for station i

Model phasor _for ith time-bin point

Trial model phasor for ith time-bin point

Number of bins in band

Number of BWS delay points in FFT

Number of time points
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nt

N

Ni

NL

NI

Ns

Nx

0

P(A)

p(¢)

fm
t3

re

¢_(t)

R

&

gI

t

to

tx

tj

b
tj

[10.1]

-[2.11]

[5.24]

[2.1]

[12.1]

[17.22]

[17.22 l

[16.3]

[2.16a]

[2.1_a]

[6.1]

-[17.1]

[16.1]

-[2.16]

[5.4]

[2.13]

[12.1]

[4.1]

[3.1]

[lO.21

[3.1]

[2.3]

Number of phase delay rate points in FFT

Number of bits summed per dump

Special summation involving residual tropospheric delay

Number of lags per channel

Number of bits summed per integrated dump

Number of S-band cycles needed for phase connection

Number of X-band cycles needed for phase connection

Combination of terms of this order

Phasor amplitude probability distribution

Phasor phase probability distribution

Phasor model for bin i at time point j

Classical electron radius = 2.8179 × 10 -is m

Location of station i at time t

Location of phasor probability distribution's center in polar coordinates:

(R,¢ _)

Special MPC sum for bin i

Like-sign sine (imaginary) Block II counts in bin mode

Integrated like-sign sine (imaginary) Block II counts in bin mode

Like-sign tone sine (imaginary) Block II counts for station i

Time

Scan reference time

Time tag of first time point

Time tag of jth time point

Time tag of jth bit
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tc

t'o

Sni

T_

T,j

V_

U_

V

xi

x1

2,i

Z1

X

z_

z_

z,Ct})

0

[10.2]

[12.3]

[S.271

[S.4]

[10.1]

[2.5]

[2.5]

[5.4]

[2.3]

[12.2]

[2.17]

[14.s]

[10.3]

[10.3]

[10.3]

[10.3]

[14.2]

[14.2]

+[2.12]

[5.11]

[2.3]

[2.15c]

Time between adjacent time points

Recalculated scan reference time

Special time expression number n for bin i used in MPC analysis

Special MPC sum for bin {

Transformed (by 2-D FFT) phasor for ith phase delay rate point and jth

BWS delay point

Real (cosine) unlike-sign counts

Imaginary (sine) unlike-sign counts

Special MPC sum for bin i

Valid counts

Integrated valid counts

Valid tone counts for station {

Weight matrix for least-squares analysis (inverse of observation covariance)

Real variable corresponding to integer phasor index i

Real variable corresponding to integer phasor index j

Linear function of xi

Linear function of x i

Parameter matrix for least-squares analysis

Matrix of minimum variance, unbiased estimates of parameters in X" for

least-squares analysis

DC bias for Block II cosine accumulator

Combination of special MPC sums for bin i

b
Lag l's single-bit correlation coefficient at bit time t i

Dummy phase variable used for integration
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l]

Zb(t)

Zz(t)

&(t)

Pz

Py

_2

kj

Per

P¢_-

Pr'/"

0-2

0 2
Q

o-2
¢o

[4.3]

[2.1]

[2.1 t

[2.171

[8.2]

[2.1a1

[2.1a]

[8.2]

[8.21

[12.1]

[1o11

[11.1]

[14.18]

[14.10d]

[14.10e]

[14.1of1

[2.9]

[12.2]

[2.17]

[2.15c]

[14.5]

[3.1]

Calibrated variance scale factor

Frequency-domain complex correlation coefficient for bin b at time t

Lag-domain complex correlation coefficient for lag l at time t

Tone complex correlation coefficient for station i at time t

Generic data phasor

X-component (also real-component or cosine-component) of Pb

Y-component (also imaginary-component or sine-component) of Pb

Generic data phasor

Generic data phasor

Integrated complex correlation coefficient

Complex correlation coefficient t7b for bin i at time point j

Counterrotated complex correlation coefficient for bin i at time point j

(after a priori model is removed)

Counterrotated complex correlation coefficient for bin i at time point j

(after residual model is removed)

Phase-BWS delay correlation coefficient

Phase-phase delay rate correlation coefficient

BWS delay-BWS delay correlation coefficient

Variance

Variance

Variance

Variance

Variance

Variance

of either component of complex correlation coefficient

of either integrated phasor component

of either tone phasor component

of phasor phase

of phasor phase for ith time-frequency point

of phasor phase for bin i at time point j
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{721

a_o

4
2

2
arslx

a?
rslx

a 2_
ks/x

a_
ks/x

o 2
Fs

T

T s

Ta !

T r

rb

Ts_

T?

[2.16c]

+[14.7]

[14.7]

[14.17]

[14.10a1

[14.10b]

[14.10c1

[17.33a]

[17.33b]

[17.33c]

[17.33d]

[lS.9]

[5.13]

[6.2]

[12.3]

[14.11

[16.6]

[16.1]

[16.6]

[16.10]

[16.7]

[16.2]

[16.2]

Variance of phasor amplitude

Variance of phasor amplitude for bin i at time point j

Variance of bandpass corrected phasor amplitude for bin i at time point j

Variance of band amplitude

Variance of ¢0 parameter

Variance of r parameter

Variance of _ parameter

Variance of S/X BWS delay

Variance of S/X phase delay rate

Variance of S/X corrected

Variance of S/X corrected

Variance of Fs

BWS delay for generic band

A priori BWS delay

A priori BWS delay corresponding to recalculated to and w0

Residual BWS delay

Symmetric baseline delay

Retarded baseline delay

Model symmetric baseline delay

Model retarded baseline delay

Symmetric station delay for station i

Model symmetric station delay for station i

Model retarded station delay for station i
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rs

rx

_t

_t.

T*

TcP

rs/x

T It

TBSA

r_SA

r_sA

[17.3]

[17.4]

[17.3]

[5.21]

[5.26]

[15.2]

[17.22]

[5.19]

[17.2a]

[17.2bl

[18.1 l

[18.3]

[17.4]

[5.20]

[5.21]

[14.20]

[5.121

[5.26]

[5.28]

[5.30]

[17.20]

[17.21]

S-band BWS delay

X-band BWS delay

BWS delay without media, instrumental or MPC effects

Scan averaged tropospheric delay

Scan averaged tropospheric delay for MPC scan

Trial BWS delay

Total BWS delay without media, instrumental or MPC effects

BWS delay from MPC scan

BWS delay change induced by charged particle effects

Phase delay change induced by charged particle effects

S-band phase delay

S-band phase delay without media, instrumental, or MPC effects

S/X corrected BWS delay

Tropospheric delay at time point j

Residual tropospheric delay at time point j after subtracting linear model

Linear tropospheric model delay

Band-averaged bitstream alignment (BSA) delay

Band-averaged bitstream alignment (BSA) delay for the MPC scan

Band-averaged bitstream alignment (BSA) delay for the MPC scan without

dispersive effects

Clock error for given band, assumed constant for all scans including MPC

scan

S-band clock error,assumed constant for a]|scans including MPC scan

X-band clock error,assumed constant for a|lscans including MPC scan
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p_

r

.tnpc

,/.at

_-×

#six

¥

T

T

T

T

¢

(¢>

[18.5]

[5.28]

[18.61

[18.2]

[17.24]

[5.1]

[5.131

[6.2]

[12.3]

[14.1]

[17.10]

[17.1o]

[17.101

[15.2]

[17.22]

[17.22]

[5.21]

+[17.19]

[17.2c]

-[2151

[2.15b]

[4.2]

S-band clock-like term used in phase connection, assumed constant for all

scans including MPC scan

Small delay correction term

Modest model delay

S-band phase delay calculated by Fit

Difference between S and X-band clock errors

Band phase delay rate estimate for MPC analysis

Phase delay rate

A priori phase delay rate

A priori phase delay rate corresponding to recalculated to and w0

Residual phase delay rate

S-band phase delay rate

X-band phase delay rate

S/X corrected phase delay rate

Trial phase delay rate

Total phase delay rate without media, instrumental or MPC effects

Phase delay rate without media, instrumental or MPC effects

Scan averaged tropospheric delay rate

Scan averaged tropospheric delay rate for the MPC scan

Phase delay rate change induced by charged particle effects

Generic phasor phase

Mean phasor phase

Tone phasor phase for station {
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4,R

4,ij

4, j

4,_,.
_3

4,o

¢;.

Cos

Cox

¢,Os

4,$x

Cos

[5.2]

[5.6]

[5.15]

[6.2]

[12.3]

[14.1]

[5.13]

[6.2]

[12.3]

[14.1]

[5.19]

[15.2]

[14.3]

[5.12]

[5.6]

[15.2]

[17.22]

[17.22]

[17.2o]

[17.21]

[17.20]

Location of phasor probability distribution's center in polar coordinates:

(R,¢ R)

Phase for bin i at time point j

Counterrotated phase for MPC calibration for bin i at time point j

MPC corrected phase for bin i at time point j

A priori phase model for bin i at time point j

A priori phase model, corresponding to recalculated to and w0, for bin i at

time point j

Residual phase model for bin i at time point j

Band phase
b

A priori band phase

A priori band phase corresponding to recalculated to and w0

Residual band phase

Band phase for MPC scan

Trial band phase

Phasor phase for ith time-frequency point

Bin phase offsets for bin i; output of MPC analysis

Model residual fringe phase for bin i

Trial phasor phase for ith time-frequency point

Total S-band phase

Total X-band phase

Total S-band phase from MPC scan

Total X-band phase from MPC scan

Total S-band phase without media, instrumental or MPC effects
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d2lm

¢lnax

_J

cmpc
Oi

_j

X 2

u/

wi

wOs

[5.13]

-[V.ll

[14.19]

[10.2]

[5.11

[5.1]

[17.1]

[5.13]

[2.3]

[s.1]

[13.1]

[5.2]

IS.l]

--[17.1]

[3.1]

+[3.21

[10.1]

[lO.2]

[12.3l

+[3.2]

Total X-band phase without media, instrumental or MPC effects

Model phase for bin i at time point j assuming instrumental, dispersive

and tropospheric phase offsets

Model phase for bin i at time point j assuming only instrumental phase

offsets

Linear model phase

Model phase for bin i at time point j

Phase of the maximum amplitude phasor after FFTs

MPC model phase for bin i at time point j

MPC bin i reference phase

Phase change induced by charged particle effects

Instrumental phase offset for bin i

b
Model fringe phase corresponding to bit time t i

Band phase rate _ w0_

Bin-averaged phase for phase tracking at time j

Chi-squared for MPC analysis

Rescaling scale factor

Generic observation frequency

Observation frequency of bin i

Band reference frequency

Observation frequency of lowest frequency bin in band

Bandwidth of single bin (nominally 0.5 Mhz)

Recalculated band reference frequency

Band reference frequency for S-band
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¢O0x

*

¢0 0

AcZo

A_os

COos

b
uJ{

W r

Wsr

_xr

WS_.

_Ox i.

WS?-P

WXrP

n

12k

[3.2]

[5.261

[5.821

[17.201

-[18.41

[5.01

-[8.1]

[5.281

[17.31

[17.4]

[17.121

[17.12]

[17.14]

[17.141

-[7.1l

[7.2l

Band reference frequency for X-band

Band reference frequency for MPC scan

Difference between scan and MPC scan reference frequency = w0 - w_

S-Band Aw0

Common S-Band reference frequency for all scans

Model residual fringe frequency for bin i

Residual fringe frequency for bin i

MPC scan's Wsr (without the band subscript) for a generic band

S-band reference frequency for S/X BWS delay calculation

X-band reference frequency for S/X BWS delay calculation

S-band reference frequency for S/X phase delay rate calculation

X-band reference frequency for S/X phase delay rate calculation

S-band reference frequency for S/X phase delay calculation

X-band reference frequency for S/X phase delay calculation

Trial fringe rate

Trial fringe rate number k
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